Supplementary figures:

Supplementary equation S1

 $1-x Y(NO_3)_{3 (aq)} + x Eu(NO_3)_{3(aq)} + 6 KOH \rightarrow Y_{1-x} Eu_x (OH)_{3 (s)} + K(NO_3) + 5H_2O$

Supplementary equation S2

 $1-x Y(NO_3)_3 + x Eu(NO_3)_3 + KOH \rightarrow Y_{1-x} Eu_x (OH)_3 \rightarrow (Y_{1-x} Eu_x)OOH + H_2O$

Supplementary Figure S1: a) XRD patterns of the products obtained from experimental runs 1-3 synthesised with different concentrations of KOH in the auxiliary feed i) 0.5M ii) 1.0 M iii) 2.0M b) XRD patterns obtained for the reaction products obtained from reactions (run 4-7) produced with the addition of hydrogen peroxide i) 0.2 M ii) 0.4 M iii) 0.6M iv) 0.8M

Supplementary Figure S2: Comparison of the nominal Eu concentration used in the synthesis of $(Y_{1-x} Eu_x)OOH$ nanoparticles compared to the atomic ratios measured using EDX [error bars indicate the standard deviation of 10 measurements].

Supplementary Figure S3: a) Stacked powder diffraction patterns obtained for $(Y_{1-x}Eu_x)OOH$ (where, x = 0.00-0.14) phosphor materials synthesised directly using CHFS. [Pattern index shows reflections from reference ICDD pattern 28442]

Sample	Phase	Lattice parameter (Å)			R _p	R _{wp}
		a	b	с		
Y _{1.00} Eu _{0.00}	P_{121}/M_1	4.282	3.660	6.071	0.073	0.060
Y _{0.98} Eu _{0.02}	P_{121}/M_1	4.285	3.670	6.079	0.0802	0.084
Y _{0.96} Eu _{0.04}	P_{121}/M_1	4.289	3.671	6.101	0.038	0.028
Y _{0.94} Eu _{0.06}	P_{121}/M_1	4.299	3.678	6.109	0.031	0.034
Y _{0.92} Eu _{0.08}	P ₁₂₁ /M ₁	4.294	3.683	6.112	0.026	0.022

Supplementary Table ST1: Summary of Lattice parameters determined by le-bail fitting for $(Y_{1-x} Eu_x)OOH$ (where, x = <0.10)

Supplementary Figure S4: Excitation spectra ($\lambda_{emission}$ 617 nm) recorded for nanoparticles produced in the composition series ($Y_{1-x}Eu_x$)OOH (where x = 0.00 - 0.14).

Supplementary Figure S5: Photoluminescence spectra ($\lambda_{\text{excitation}} 254 \text{ nm}$) recorded for nanoparticles produced in the composition series (Y_{1-x}Eu_x)OOH (where x = 0.00-0.14).

Supplementary Figure S6: TEM images of $(Y_{0.96}Eu_{0.04})$ OOH phosphor nanoparticles heat treated at 500 °C for a) 60 s b) 180 s c) 300 s d) 600 s e) 1200 s f) 1800 s (Images were captured using JEOL 100CX)

Supplementary Figure S7: a) Zeta-potential titration of citric acid coated $(Y_{0.96}Eu_{0.04})_2O_3$ (squares) and $(Y_{0.96}: Eu_{0.04})$ OOH (circles), b) Intensity weighted hydrodynamic diameters of **citric acid coated** $(Y_{0.96}Eu_{0.04})_2O_3$ (black squares) and $(Y_{0.96}Eu_{0.04})_2O_4$ (black triangles) and the corresponding distribution corrected to show distribution by number (red symbols) [Inset shows a TEM image of citric acid coated $(Y_{0.96}Eu_{0.04})_2O_3$].

Supplementary Figure S8: a) comparison of the fluorescence intensity of $(Y_{0.96}Eu_{0.04})OOH$ (main) and $(Y_{0.96}Eu_{0.04})_2O_3$ (inset) nanoparticles [squares] and their citric-acid coated derivatives [circles] **b**) Pl intensity data ($\lambda_{em} 620 \pm 10$ nm) of optical phantoms containing various concentrations of coated nanoparticles (Squares, $(Y_{0.96}Eu_{0.04})_2O_3$ and circles $(Y_{0.96}Eu_{0.04})OOH$) excited at 470 nm.

Supplementary Figure S9: The diameter of fluorescence signals from nanoparticles dispersed on cover-glass visualised using 470 nm excitation / 620 nm emission **a**) citric acid coated $(Y_{0.96}Eu_{0.04})OOH$ nanoparticles **b**) citric acid coated $(Y_{0.96}Eu_{0.04})_2O_3$ nanoparticles (insets show the measured diameter of fluorescence signals).