1	Appendix A-Supporting information
2	
3	Protein adsorption behavior in batch and competitive conditions with nanoparticle surface imprinting
4	Niranjani Sankarakumar ^a , Yen Wah Tong ^{a, b} *
5	^a Department of Chemical & Biomolecular Engineering, National University of Singapore
6	^b Department of Bioengineering, National University of Singapore
7	21 Lower Kent Ridge Road, Singapore 119077
8	*Corresponding author: Yen Wah Tong; Tel: +65-65168467; Email: chetyw@nus.edu.sg
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

20 A.1. Swelling experiments

The imprinted polymeric particles dispersed in water were recovered by centrifugation at 9000 rpm for 40 min. The swollen weight (W_W) of the particles was measured. Subsequently, the particles were freeze-dried for 24 h and weighed again to obtain the dry weight (W_D). The swelling ratio (S.R) of the polymer was then calculated as follows:

25
$$S.R = (W_W - W_D) / W_D$$
 Eq. (A.1)

The S.R (Table A.1) is usually an indicator of the extent of cross-linking and hence the flexibility of the imprinted cavities. The S.R values obtained in this work were comparable to our previous work in which the values were in between 3-5.

29

30 A.2. Imprinting Efficiency

31 The parameter, imprinting efficiency (I.E), define the degree of template-monomer complexation¹. 32 Higher number of template-monomer interactions results in stronger template-monomer complexation 33 and hence higher I.E values, assuming negligible template-template complexes. The I.E values of the protein imprinted particles were calculated based on the amount of protein adsorbed, as follows: 34 35 36 $I.E = Q_{iMIP} / Q_{iNIP}$ Eq. (A.2) 37 where Q_{iMIP} and Q_{iNIP} are the static equilibrium adsorption capacity of iMIPs and iNIPs respectively 38 $(\mu mol g^{-1}).$ 39

40

41 A.3. Selectivity parameters of the polymers

42	Molecular recognition selectivity was evaluated by the following parameters calculated acc	ording to
43	the adsorbed protein concentrations of the protein imprinted and control particles obtained in th	
44	competitive adsorption tests under equilibrium conditions ² :	
45	Separation factor, $\alpha = K_{D1}/K_{D2}$ Eq.	(A.3)
46	where K_{D1} and K_{D2} are the static distribution coefficients of the template and the control m	olecules.
47	K_D is the ratio of the amount of ligand adsorbed and free ligand concentration.	
48	Relative separation factor, $\beta = \alpha_1/\alpha_2$ Eq.	(A.4)
49	where α_1 and α_2 are the separation factors of the imprinted and control nanoparticles respect	ively.
50		
51	A.4. Zeta potential of imprinted nanoparticles	
52	A Zetasizer Nano-ZS (Malvern Instruments, UK) was used to measure the zeta potential	of all the
53	polymeric nanoparticles prepared.	
54		
55	A.5. Experimental and theoretical binding site density relation	
56	We can theoretically calculate the maximum binding site density (N_{max}) taking RNase	A as the
57	protein of interest as follows. Based on the protein concentration used during the immobiliza	tion step,
58	the maximum amount of RNase A immobilized on the core beads would be not more than	25 mg/g.
59	The mass percentage of the external shell layer over the core beads in the final core-shell i	mprinted
60	particles can be calculated from the magnetite encapsulation efficiency assuming negligi	ble mass

change of the core particles due to the surface modification reactions. TGA results showed that the
 magnetite encapsulation efficiency for the unmodified core particles and the resulting core-shell
 imprinted particles were 13.28 wt% and 4.44 wt%, respectively. Hence, the weight percentage of the

shell is calculated to be 66.6 % ((0.1328 – 0.0444) / 0.1328). Therefore, the maximum template amount embedded in the imprinted particles before the template removal is estimated to be 8.4 mg/g (25 / [1 + 0.666 / (1 - 0.666)]). Assuming that all the nitrogen originates from the template protein molecules, there are 169 nitrogen atoms in 1 RNase A molecule and each binding site is occupied/created by one template protein molecule, the total number of RNase A molecules immobilized ($N_{RNase A}$) can be calculated. Thus, N_{max} is the ratio of $N_{RNase A}$ to N_P , where is the total number of nanoparticles.

71

72
$$N_{\text{max}} = \frac{N_{RNaseA}}{N_P} = \frac{2.14 \times 10^{18}}{N_P}$$

73

From the single protein adsorption kinetics, the measured specific RNase A rebinding on the
imprinted particles achieved 89.3 mg/g. The experimental binding site density in this case is

76

77
$$N_{Exp} = \frac{N_{RNaseA}}{N_P} = \frac{2.27 \times 10^{19}}{N_P}$$

78

79 $N_{Exp} = 10.6 N_{max}$

80

81 **References**

- 82 1. S. Srebnik, Chem. Mater., 2004, 16, 883-888.
- 83 2. S. Lu, G. Cheng and X. Pang, J. Appl. Polym. Sci., 2006, 99, 2401-2407.
- 84 85

86

Table A.1 Sizes and	Swelling measurements
---------------------	-----------------------

Polymer particles	Mean diameter ^a (nm)	Polydispersity	Swelling ratio
Core	368 ± 3.7	0.205	-
LiMIP	582 ± 5.3	0.012	3.54 ± 0.70
iNIP	513 ± 4.8	0.065	2.28 ± 0.38
RiMIP	553 ± 4.6	0.109	3.94 ± 0.59

^aObtained from Dynamic light scattering (DLS) measurements.

Table A.2 Surface atomic composition (%) of all particles from XPS wide scan spectra

Polymer particles	С	0	Ν
Core	71.63	28.37	0.00
RNase A immobilized core	68.50	27.01	4.49
Lys immobilized core	72.37	23.06	4.57
RiMIP	11 09	52.80	2.12
(Before hydrolysis)	44.90	32.89	2.15
LiMIP	73 17	24 42	2 16
(Before hydrolysis)	/ J.42	27.72	2.10
RiMIP	63.98	35.62	0.40
(After hydrolysis)	05.70	55.02	0.40
LiMIP	73 36	26.64	0.35
(After hydrolysis)	75.50	20.04	0.33

 Table A.3 Physico-chemical properties of the proteins

Property	Lys	RNase A	BSA
Molecular mass (gmol ⁻¹)	14600	13600	66000
Size (nm ³)	4.5 x 3.0 x 3.0	3.8 x 2.8 x 2.2	4.0 x 4.0 x 14
Isoelectric point (IEP)	11.1	9.4	4.8
Adiabatic compressibility (k _s) $(x10^{-6} \text{ cm}^3 \text{ g}^{-1} \text{ bar}^{-1})$	3.6	0.8	6.5

Table A.4 Imprinting efficiencies

Single ^a	Binary ^b	Ternary ^c
7.70	6.75	1.93
6.27	1.20	0.74
	Single ^a 7.70 6.27	Single ^a Binary ^b 7.70 6.75 6.27 1.20

^aInitial concentration of Lys: 1.8 mg mL⁻¹ & RNase A: 2 mg mL⁻¹.

^bAn equimolar mixture of Lys & RNase A were used.

^cA 1:1:2 mixture of Lys: RNase A: Albumin was used.

99 100

97

98

Fable A.5 Selectivity parameter	eters of the polymers
--	-----------------------

Dolumor portiolog	K _D (1	nL g ⁻¹)	<i>a</i>	ρ
Polymer particles	Lys	RNase A	u	р
LiMIP	59.94	7.26	8.26 (Lys-RNase A)	27.07
iNIP	5.71	18.73	0.31	27.07
RiMIP	87.48	33.19	0.38 (RNase A- Lys)	0.12
iNIP	5.71	18.73	3.28	0.12

101

102

 Table A.6
 Zeta potential measurements

Polymer particles	Zeta potential ^a (mV)
LiMIP	-0.0798 ± 0.09
iNIP	-0.0888 ± 0.02
RiMIP	-0.0169 ± 0.04

^aAll particles were measured in 0.01M phosphate buffered saline (PBS), pH 7.4 at 25°C

104

Fig. A.1 Electron micrographs of particles (a) TEM image of core particles (b) FESEM images of
core and (c) core-shell nanoparticles. There was no significant morphological difference between the
imprinted and control particles in the SEM images.

Fig. A.2 Ternary protein equilibrium adsorption analyses of LiMIPs and RiMIPs. A mixture
containing 25 mol% each of Lys & RNase A and 50 mol% BSA was mixed with the nanoparticles.
Error bars represent standard error. Statistical significance was denoted by *. One-way ANOVA:
p<0.05. iNIPs were used as control samples (■, Lys; □, RNase A; ℤ, BSA)

Fig. A.3 An illustration of competitive protein adsorption behaviour of Lys and RNase A imprinted
nanoparticles. The figure depicts the specific adsorption of Lys (template) by the LiMIPs due to the
imparted molecular affinity and the high non-specific adsorption of Lys (non-template in this case) by
the RiMIPs owing to strong cross-protein interactions during binary protein adsorption process.

136 Fig. A.4 Ternary protein adsorption kinetics of (a) LiMIP (b) RiMIP (c) iNIP. iNIPs were used as

- 137 control samples (■, LiMIP-Lys; ●, LiMIP-RNase A; ▲, LiMIP-BSA; ▼, RiMIP-Lys; ★, RiMIP-
- 138 RNase A; \blacklozenge , RiMIP-BSA; \Box , iNIP-Lys; O, iNIP-RNase A; \triangle , iNIP-BSA).