Heterogenisation of ketone catalysts within mesoporous supports for asymmetric epoxidation

Lynda J. Brown*, Richard C. D. Brown and Robert Raja

School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.

> Phone: (+)44-(0)23-8059-6757 Fax: (+)44-(0)23-8059-3781 E-mail: ljb2@soton.ac.uk

Supporting Information

Table of Contents

NMR spectroscopic data (catalyst synthesis)	S 4
¹ H NMR Compound 2	S4
¹³ C NMR Compound 2	S5
¹ H NMR Compound 3	S6
¹³ C NMR Compound 3	S7
¹ H NMR Compound 4	S8
¹³ C NMR Compound 4	S 9
¹ H NMR Compound 5	S10
¹³ C NMR Compound 5	S11
¹ H NMR Compound 7	S12
¹³ C NMR Compound 7	S13
²⁹ Si NMR Sílica 8a	S14
²⁹ Si NMR Sílica 9a	S15
¹³ C NMR Sílica 9a	S16
²⁹ Si NMR Sílica 10a	S17
¹³ C NMR Sílica 10a	S18

¹H NMR spectroscopic data (epoxides)

¹ H NMR (1 <i>S</i> ,2 <i>R</i>)-1,2-Dihydronaphthalene oxide	S19
¹ H NMR (<i>R,R</i>)- <i>trans</i> -Stilbene oxide	S20
¹ H NMR (3 <i>R</i> ,4 <i>R</i>)-2,2-Dimethy-6-cyano-chromene oxide	S21
¹ H NMR (3 <i>R</i> ,4 <i>R</i>)-2,2-Dimethylchromene oxide	S22
¹ H NMR (3 <i>R</i> ,4 <i>R</i>)-2,2-Dimethy-6-chloro-chromene oxide	S23
¹ H NMR (3 <i>R,</i> 4 <i>R</i>)-2,2-Dimethy-6-bromo-chromene oxide	S24
¹ H NMR (3 <i>R,</i> 4 <i>R</i>)-2,2-Dimethy-6-fluoro-chromene oxide	S25
¹ H NMR (1 <i>R,2S</i>)-Indene oxide	S26
¹ H NMR 1-Phenylcyclohexene oxide	S27

Chiral HPLC chromatograms for epoxides

S28

S19

HPLC chromatogram of (1 <i>S</i> ,2 <i>R</i>)-1,2-Dihydronaphthalene oxide	S28
HPLC chromatogram of (R,R)-trans-Stilbene oxide	S28
HPLC chromatogram of (3 <i>R</i> ,4 <i>R</i>)-2,2-Dimethy-6-cyano-chromene oxide	S28
HPLC chromatogram of (3 <i>R</i> ,4 <i>R</i>)-2,2-Dimethylchromene oxide	S29
HPLC chromatogram of(3 <i>R</i> ,4 <i>R</i>)- 2,2-Dimethy-6-chloro-chromene oxide	S29

HPLC chromatogram of (3 <i>R</i> ,4 <i>R</i>)-2,2-Dimethy-6-bromo-chromene oxide	S29
HPLC chromatogram of (3 <i>R</i> ,4 <i>R</i>)-2,2-Dimethy-6-fluoro-chromene oxide	S30
HPLC chromatogram of(1 <i>R</i> ,2 <i>S</i>)- Indene oxide	S30
HPLC chromatogram of 1-Phenylcyclohexene oxide	S30

NMR spectroscopic data (catalyst synthesis)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2012

S6

S13

Chiral HPLC chromatograms for epoxides

HPLC chromatogram of (15,2R)- 1,2-dihydronaphthalene oxide (table 4, entry 1)

[Column: Chiralcel OBH column; Eluent: 1 % IPA / hexanes; Flowrate: 1.0 mL min⁻¹; Detection: UV254nm] (*e.e.* 90 %)

HPLC chromatogram of (R,R)-trans-stilbene oxide (table 4, entry 2)

[Column: Chiralcel ODH column; Eluent: 2 % IPA / hexanes; Flowrate: 1.0 mL min⁻¹; Detection: UV254nm] (*e.e.* 86 %)

[Column: Chiralcel ODH column; Eluent: 10 % IPA / hexanes; Flowrate: 1.0 mL min⁻¹; Detection: UV220nm] (*e.e.* 88 %)

HPLC chromatogram of (3R,4R)-2,2-dimethylchromene oxide (table 4, entry 4)

[Column: Chiralcel ODH column; Eluent: 10 % IPA / hexanes; Flowrate: 1.0 mL min⁻¹; Detection: UV220nm] (*e.e.* 80 %)

HPLC chromatogram of (3R,4R)-2,2-dimethy-6-chloro-chromene oxide (table 4, entry 5)

[Column: Chiralcel ODH column; Eluent: 10 % IPA / hexanes; Flowrate: 1.0 mL min⁻¹; Detection: UV220nm] (*e.e.* 79 %)

HPLC chromatogram of (3R,4R)-2,2-dimethy-6-bromo-chromene oxide (table 4, entry 6)

[Column: Chiralcel ODH column; Eluent: 10 % IPA / hexanes; Flowrate: 1.0 mL min⁻¹; Detection: UV220nm] (*e.e.* 83 %)

HPLC chromatogram of (3R,4R)-2,2-dimethy-6-fluoro-chromene oxide (table 4, entry 7)

[Column: Chiralcel ODH column; Eluent: 10 % IPA / hexanes; Flowrate: 1.0 mL min⁻¹; Detection: UV220nm] (*e.e.* 81 %)

HPLC chromatogram of (1R,2S)-indene oxide (table 4, entry 8)

[Column: Chiralcel OB column; Eluent: 0.5 % IPA / hexanes; Flowrate: 1.0 mL min⁻¹; Detection: UV220nm] (*e.e.* 68 %)

HPLC chromatogram of phenylcyclohexene oxide (table 4, entry 9)

[Column: Chiralcel ODH column; Eluent: 1 % IPA / hexanes; Flowrate: 0.5 mL min⁻¹; Detection: UV220nm] (*e.e.* 18 %)

