# Supplementary information:

# Unusual Approach to *meso*-Alkoxy BODIPYs with Good Balance between Larger Stokes Shift and Higher Fluorescence Quantum Yields

Lu Wang,<sup>†</sup> Yuhui Zhang<sup>†</sup> and Yi Xiao<sup>\*†</sup>

<sup>†</sup>State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Road, Dalian 116012, China.

### **Table of Contents**

| 1. General methods                                                                 | S2      |
|------------------------------------------------------------------------------------|---------|
| 2. Synthesis and characterization of <b>2-3</b> ( <b>a</b> , <b>b</b> , <b>c</b> ) | S2-S4   |
| 3. The absorption and fluorescence spectra in different solvents of <b>3a-3c</b>   | S5-S8   |
| 4. Calculation details                                                             |         |
| 5. Cyclic voltammogram                                                             | S14-S16 |
| 6. X-ray crystallographic data of <b>3a</b>                                        | S17     |
| 7. NMR spectra                                                                     | S18-S21 |

#### 1 General method

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded using 400 MHz and 100 MHz. Melting points were measured, and were uncorrected. Chromatographic purification was conducted with silica gel (200 - 300 mesh). Absorption spectra were recorded on TU-1901 UV-Vis absorption spectrometer and fluorescence spectra were recorded on F-4500 spectrometer. Cyclic voltammetry (CV) was performed in 0.05M solution in CH<sub>2</sub>Cl<sub>2</sub> with a standard commercial electrochemical analyzer in a three electrode single-component cell under argon with a scan rate of 100 mV/s. Working electrode: glassy carbon; reference electrode: Ag/AgCl; auxiliary electrode: Pt disk; internal standard: ferrocene (Fc). The energy of Fc/Fc<sup>+</sup> is 5.08 eV relative to vacuum.<sup>1</sup> Compound **1** was obtained as previously reported.<sup>2</sup> The films of BDP and Compound **3a** were prepared by spin coating method. The self-quenching experiment can be found in the literatures.<sup>3</sup> The photostability measurement was evaluated by using Olympus FV1000 confocal microscope.<sup>1b</sup> Unless otherwise noted, materials were commercially available and were used without further purification.

#### 2. Synthesis and characterization of 2-3 (a, b, c)

#### Synthesis of Compound 2



Compound **1** (131mg, 0.55mmol) was stirred in anhydrous dichloromethane (20ml) at room temperature. A solution of sulfonyl chloride (0.45ml, 5.5mmol) in dichloromethane (2ml) is added. The resulting solution is stirred at room temperature for 0.5h. After TLC showed that the reaction went to completion, the reaction mixture was allowed to be poured into ice-water and extracted with dichloromethane. The solution was dried over MgSO<sub>4</sub>, filtered and concentrated in vacuo. The product is purified chromatographically (Silica, CH<sub>2</sub>Cl<sub>2</sub>/hexane; 1:6, v/v) to yield red solid (155 mg, 78%). Mp:119-122°C. 'H-NMR (CDCl<sub>3</sub>): 7.33 (s, 2H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>): 144.0, 136.7, 130.4, 125.8, 122.6; MALDI-TOF-MS: Calcd. for C<sub>9</sub>H<sub>2</sub>BCl<sub>5</sub>F<sub>2</sub>N<sub>2</sub> 361.8722, found 361.8747.

Synthesis of Compound 3a



Compound **2** (102mg, 0.28mmol) was stirred in anhydrous methanol (20ml) at room temperature. The resulting solution is stirred for 2h. After TLC showed that the reaction went to completion, the reaction mixture was concentrated in vacuo. The product is purified chromatographically (Silica, CH<sub>2</sub>Cl<sub>2</sub>/hexane; 1:2, v/v) to yield orange solid (96mg, 97%). Mp:155-157°C.'H-NMR (CDCl<sub>3</sub>): 7.28 (s, 2H), 4.45 (s, 3H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>): 158.1, 137.4, 123.2, 123.0, 119.6, 62.7; MALDI-TOF-MS: Calcd. for  $C_{10}H_5BCl_4F_2N_2O$  357.9217, found 357.9224.

#### Synthesis of Compound 3b



Compound **2** (110mg, 0.3mmol) was stirred in anhydrous butyl alcohol (22ml) at room temperature. The resulting solution is stirred for 3h. After TLC showed that the reaction went to completion, the reaction mixture was concentrated in vacuo. The product is purified chromatographically (Silica, CH<sub>2</sub>Cl<sub>2</sub>/hexane; 1:2, v/v) to yield orange solid (115mg, 96%). Mp:147-150 °C. <sup>1</sup>H-NMR (DMSO): 7.87 (s, 2H), 4.83-4.80 (t, J = 5.7 Hz, 2H), 1.86-1.80 (m, 2H), 1.55-1.46 (m, 2H), 0.98-0.96 (t, J = 7.3 Hz, 3H); <sup>13</sup>C-NMR (DMSO): 166.8, 129.6, 119.7, 112.1, 111.6, 60.3, 34.9, 18.6, 13.8; MALDI-TOF-MS: Calcd. for C<sub>13</sub>H<sub>11</sub>BCl<sub>4</sub>F<sub>2</sub>N<sub>2</sub>O 399.9687, found 399.9699.

Synthesis of Compound 3c



Compound **2** (127mg, 0.35mmol) was stirred in anhydrous 2-Methoxyethanol (26ml) at room temperature. The resulting solution is stirred for 2.5h. After TLC showed that the reaction went to completion, the reaction mixture was concentrated in vacuo. The product is purified chromatographically (Silica, CH<sub>2</sub>Cl<sub>2</sub>/hexane; 1:2, v/v) to yield orange solid (133mg, 95%). Mp:159-161 °C. <sup>1</sup>H-NMR (CDCl<sub>3</sub>): 7.29 (s, 2H), 4.74-4.72 (t, 2H), 3.84-3.82 (t, J = 5.6 Hz, 2H), 3.46 (s, 3H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>): 157.7, 137.8, 123.4, 123.3, 119.7, 75.5, 70.4, 59.6; MALDI-TOF-MS: Calcd. for C<sub>12</sub>H<sub>9</sub>BCl<sub>4</sub>F<sub>2</sub>N<sub>2</sub>O<sub>2</sub> 401.9479, found 401.9489.

3. The absorption and fluorescence spectra in different solvents<sup>4</sup> of 3





Fig. S1 Normalized absorption of 3a in different solvents.



Fig. S2 Normalized fluorescence of 3a in different solvents.



Fig. S3 Normalized absorption of 3b in different solvents.



Fig. S4 Normalized fluorescence of 3b in different solvents.



Fig. S5 Normalized absorption of 3c in different solvents.



Fig. S6 Normalized fluorescence of 3c in different solvents.

| Solvent             | $\lambda_{abs}(nm)$ | $\lambda_{em}(nm)$ | $\Delta S^{a}(nm)$ | φ <sub>F</sub> <sup>b</sup> |
|---------------------|---------------------|--------------------|--------------------|-----------------------------|
| <b>3</b> a          |                     |                    |                    |                             |
| Toluene             | 488                 | 538                | 50                 | 0.63                        |
| Dichloromethane     | 486                 | 536                | 50                 | 0.80                        |
| Tetrahydrofuran     | 478                 | 531                | 53                 | 0.81                        |
| Ethyl acetate       | 478                 | 529                | 51                 | 0.58                        |
| Acetonitrile        | 476                 | 530                | 54                 | 0.84                        |
| Methanol            | 476                 | 529                | 53                 | 0.96                        |
| 3b                  |                     |                    |                    |                             |
| Toluene             | 487                 | 536                | 49                 | 0.74                        |
| Dichloromethane     | 485                 | 533                | 48                 | 0.92                        |
| Tetrahydrofuran     | 477                 | 529                | 52                 | 0.76                        |
| Ethyl acetate       | 476                 | 528                | 52                 | 0.98                        |
| Acetonitrile        | 474                 | 527                | 53                 | 0.98                        |
| Methanol            | 475                 | 527                | 52                 | 0.78                        |
| 3c                  |                     |                    |                    |                             |
| Toluene             | 489                 | 537                | 48                 | 0.74                        |
| Dichloromethane 488 |                     | 535                | 47                 | 0.86                        |
| Tetrahydrofuran     | 479                 | 530                | 51                 | 0.67                        |
| Ethyl acetate       | 477                 | 530                | 53                 | 0.73                        |
| Acetonitrile        | 476                 | 529                | 53                 | 0.88                        |
| Methanol            | 478                 | 529                | 51                 | 1.00                        |
|                     |                     |                    |                    |                             |

<sup>a</sup> Stokes shift

 $^b$  The fluorescein quantum yields were calculated using NaOH aqueous solution ( $\phi_F\!\!=\!\!0.85)$  for 3a-3c as the standard.

### 4. Calculations details

**Table S2** The vertical excitation (absorption) and the emission of **2** and **3a**. The oscillator strengths (*f*) and excitation energy (eV). The calculation of the  $S_0 \rightarrow S_1$  energy gaps are based on the optimized ground state geometry (absorption) and the optimized  $S_1$  excited state geometry (emission).

| Compounds      |                                         | Electronic               | TDDFT/B3LYP/6-31G (d)          |                  |                          |                 |
|----------------|-----------------------------------------|--------------------------|--------------------------------|------------------|--------------------------|-----------------|
|                |                                         | Transitions <sup>a</sup> | Excitation energy <sup>a</sup> | $f^{\mathrm{b}}$ | Composition <sup>c</sup> | CI <sup>d</sup> |
| 2 abso<br>emis | • <b>b</b> • • • • • • <b>4</b> • • • f | $S_0 \rightarrow S_1$    | 2.84 eV                        | 0.634            | H-1→L                    | 0.1341          |
|                | absorption                              |                          |                                |                  | H→L                      | 0.6982          |
|                | emission <sup>f</sup>                   | $S_0 \rightarrow S_1$    | 2.77 eV                        | 0.702            | H→L                      | 0.7031          |
| 3a -           | absorption <sup>e</sup>                 | $S_0 \rightarrow S_1$    | 2.93 eV                        | 0.600            | H→L                      | 0.7013          |
|                | emission <sup>f</sup>                   | $S_0 \rightarrow S_1$    | 2.69 eV                        | 0.656            | H→L                      | 0.7043          |

<sup>a</sup> The numbers are the excitation energy. <sup>b</sup> Oscillator strength. <sup>c</sup> H stands for HOMO and L stands for LUMO. <sup>d</sup> Coefficient of the wave function for excitations. The Cl coefficients are in absolute values. <sup>e</sup> The calculations on absorption are based on the optimized ground state geometry. <sup>f</sup> The calculations on the fluorescence are based on the optimized S<sub>1</sub> state geometry.



Fig. S7 The change of the bond angle in  $S_0$  and  $S_1$  states of 2 and 3a.



**Fig. S8** The frontier molecular orbitals involved in the vertical excitation (absorption, left column) and emission (right column) of **2** and **3a**.

# The coordinates of ground state of Compounds (optimized geometry)

#### The coordinates of **2** (DFT/B3LYP/6-31G)

| Charge = 0 | Multiplicity = 1 |             |              |
|------------|------------------|-------------|--------------|
| С          | -5.36900000      | 0.76200000  | 0.00800000   |
| Ν          | -5.45500000      | -0.50900000 | 0.00900000   |
| В          | -4.24000000      | -1.38700000 | -0.01700000  |
| Ν          | -3.00000000      | -0.55000000 | -0.00600000  |
| С          | -3.04200000      | 0.75500000  | 0.00300000   |
| С          | -4.20200000      | 1.43100000  | 0.00700000   |
| С          | -1.75700000      | -0.94200000 | -0.00800000  |
| С          | -0.97800000      | 0.15000000  | -0. 00100000 |
| С          | -1.78300000      | 1.22100000  | 0.00500000   |
| С          | -6.62400000      | 1.24500000  | 0. 01000000  |
| С          | -7.44500000      | 0.18600000  | 0.01200000   |
| С          | -6.66400000      | -0.90700000 | 0.01200000   |
| C1         | -4.19400000      | 3.15700000  | 0.01300000   |
| F          | -4.23800000      | -2.30300000 | 1.22100000   |
| F          | -4.25300000      | -2.24200000 | -1.29900000  |
| C1         | -9.16400000      | 0.25800000  | 0.01500000   |
| C1         | -7.20400000      | -2.54000000 | 0.01500000   |
| C1         | 0.73700000       | 0.22000000  | 0.00000000   |
| C1         | -1.20100000      | -2.57000000 | -0.01900000  |
| Н          | -1.45700000      | 2.26900000  | 0.01100000   |
| Н          | -6.93600000      | 2.29700000  | 0.01000000   |
|            |                  |             |              |

- 1 2 2.0 6 2.0 10 2.0 2 3 1.0 12 2.0 3 4 1.0 14 1.0 15 1.0 4 5 2.0 7 2.0 5 6 2.0 9 2.0 6 13 1.0 7 8 2.0 19 1.0 8 9 2.0 18 1.0 9 20 1.0 10 11 2.0 21 1.0 11 12 2.0 16 1.0 12 17 1.0 13 14 15 16 17
- 18

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

19

20

21

#### The coordinates of **3a** (DFT/B3LYP/6-31G)

|              | •                | · · · · · · · · · · · · · · · · · · · |             |
|--------------|------------------|---------------------------------------|-------------|
| Charge $= 0$ | Multiplicity = 1 |                                       |             |
| С            | -2.83326198      | 0.29671860                            | -0.53470815 |
| Ν            | -2.93595693      | -0.95025318                           | -0.78231096 |
| В            | -1.97340318      | -1.95642436                           | -0.22834451 |
| Ν            | -0.95260224      | -1.25296465                           | 0.61102601  |
| С            | -0.96100894      | 0.04336763                            | 0.75910012  |
| С            | -1.85600000      | 0.87600000                            | 0.18800000  |
| С            | 0.02494083       | -1.76690313                           | 1.30274690  |
| С            | 0.65921612       | -0.76273581                           | 1.92592573  |
| С            | 0.03851534       | 0.37636307                            | 1.59143314  |
| С            | -3.89312110      | 0.90463266                            | -1.09615373 |
| С            | -4.61500783      | -0.04983035                           | -1.69994914 |
| С            | -3.97232644      | -1.20901335                           | -1.47632351 |
| F            | -2.73049251      | -2.97206573                           | 0.64812931  |
| F            | -1.26345318      | -2.68700859                           | -1.38443951 |
| C1           | 2.01444606       | -0.86264062                           | 2.97493328  |
| C1           | 0. 43033546      | -3.43453726                           | 1.41520403  |
| C1           | -6.07498914      | 0.20337390                            | -2.57577057 |
| C1           | -4.46243596      | -2.76007596                           | -2.03601398 |
| 0            | -1.88300000      | 2.20700000                            | 0.52200000  |
| С            | -2.86803936      | 2.95456471                            | -0.15197215 |
| Н            | 0.30802782       | 1.38198646                            | 1.93603527  |
| Н            | -4.13094930      | 1.97608405                            | -1.07104042 |
| Н            | -2.78259406      | 4.01289157                            | 0.18138707  |
| Н            | -3.88064173      | 2.57120877                            | 0.10318204  |
| Н            | -2.70244839      | 2.90243728                            | -1.25114109 |

## 5. Cyclic voltammograms



**Fig. S9** Cyclic voltammogram of **2** in  $CH_2Cl_2$  (at 100 mV s<sup>-1</sup>)



**Fig. S10** Cyclic voltammogram of **3a** in  $CH_2Cl_2$  (at 100 mVs<sup>-1</sup>)



**Fig. S11** Cyclic voltammogram of **3b** in  $CH_2Cl_2$  (at 100 mVs<sup>-1</sup>)



**Fig. S12** Cyclic voltammogram of **3c** in  $CH_2Cl_2$  (at 100 mVs<sup>-1</sup>)

| Compound   | $E_{g}^{a}(eV)$ | $E_{red1/2}$ (V) vs ferrocene | HOMO <sup>b</sup> /LUMO <sup>c</sup> (eV) |
|------------|-----------------|-------------------------------|-------------------------------------------|
| 2          | 2.21            | -0.92                         | -6.37/-4.16                               |
| <b>3</b> a | 2.45            | -1.32                         | -6.21/-3.76                               |
| 3b         | 2.46            | -1.27                         | -6.27/-3.81                               |
| 3c         | 2.41            | -1.19                         | -6.30/-3.89                               |
|            |                 |                               |                                           |

Table S3 Electrochemical data of 2-3(a, b, c) in CH<sub>2</sub>Cl<sub>2</sub> (Scan rate 100 mV/s)

 $^a$  Optical band gap,  $E_g {=} \ hc/\!\lambda$ 

<sup>b</sup> HOMO=LUMO-E<sub>g</sub>

 $^{\rm c}$  Based on the assumption that the energy of  $F_c/F_c^{\,+}$  is 5.08 eV relative to vacuum.

# 6. X-ray crystallographic data of **3a**

### Table S4. Crystal data and structure refinement for 3a

| Empirical formula                | C10 H5 B Cl4 F2 N2 O                                     |
|----------------------------------|----------------------------------------------------------|
| Formula weight                   | 359.77                                                   |
| Temperature                      | 293(2) K                                                 |
| Wavelength                       | 0.71073 Å                                                |
| Crystal system                   | Monoclinic                                               |
| space group                      | P2(1)/c                                                  |
| Unit cell dimensions             | $a = 9.8376(14) \text{ Å} \qquad \alpha = 90^{\circ}$    |
|                                  | $b = 9.1284(12) \text{ Å} \qquad \beta = 95.922^{\circ}$ |
|                                  | $c = 15.0458(19) \text{ Å} \qquad \gamma = 90^{\circ}$   |
| Volume                           | 1343.9(3) Å3                                             |
| Z                                | 4                                                        |
| Calculated density               | 1.778 Mg/m3                                              |
| Absorption coefficient           | 0.896 mm-1                                               |
| F(000)                           | 712                                                      |
| Crystal size                     | 0.4 x 0.3 x 0.2 mm                                       |
| Theta range for data collection  | 2.08 to 24.99°                                           |
| Index ranges                     | -9<=h<=11, -10<=k<=9, -17<=l<=17                         |
| Reflections collected            | 7960                                                     |
| Independent reflections          | 2353 [R(int) = 0.0192]                                   |
| Completeness to theta $= 24.990$ | 100 %                                                    |
| Absorption correction            | None                                                     |
| Refinement method                | Full-matrix least-squares on F2                          |
| Data / restraints / parameters   | 2353 / 0 / 181                                           |
| Goodness-of-fit on F2            | 1.068                                                    |
| Final R indices [I>2sigma(I)]    | R1 = 0.0384, $wR2 = 0.1098$                              |
| R indices (all data)             | R1 = 0.0475, wR2 = 0.1159                                |
| Largest diff. peak and hole      | 0.54 and -0.31 e. Å3                                     |



Fig. S13 X-Ray structure of 3a

### 7. NMR spectra



Fig. S14 <sup>1</sup>H NMR (CDCl<sub>3</sub>) spectrum of 2



Fig. S15 <sup>13</sup>C NMR (CDCl<sub>3</sub>) spectrum of 2



Fig. S16 <sup>1</sup>H NMR (CDCl<sub>3</sub>) spectrum of 3a



Fig. S17<sup>13</sup>C NMR (CDCl<sub>3</sub>) spectrum of 3a



Fig. S18 <sup>1</sup>H NMR (DMSO) spectrum of 3b



Fig. S19<sup>13</sup>C NMR (DMSO) spectrum of 3b



Fig. S21 <sup>13</sup>C NMR (CDCl<sub>3</sub>) spectrum of 3c

Reference

- (a) B. C. Thompson, Y. G. Kim, T. D. Mccarley and J. R. Reynolds, *J. AM. CHEM. SOC.*, 2006, 128, 12714 (b)Y. P. Xie, X. F. Zhang, Y. Xiao, Y. D. Zhang, F. Zhou, J. Qi and J. L. Qu, *Chem. Comm.*, 2012, 48, 4338.
- 2. T. V. Goud, A. Tutar and J. F. Biellmann, Tetrahedron., 2006, 62, 5084.
- 3. D. K. Zhang, Y. G. Wen, Y. Xiao, G. Yu, Y. Q. Liu and X. H. Qian, *Chem. Commun.*, 2008, 4777.
- 4. A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891