Electronic Supplementary Information

DicationicACregioisomercyclodextrins:mono-6^A-ammonium-6^C-alkylimidazolium-β-cyclodextrinchloridesaschiralselectors for enantioseparation

Yun Dai, Shuye Wang, Jianhua Wu, Jian Tang*, Weihua Tang*

Content

1. Materials	S2
2. Instrumentation	
3. ¹ H and ¹³ C NMR spectra of 2	S4
4. ¹ H and ¹³ C NMR spectra of 4a	S5
5. ¹ H and ¹³ C NMR spectra of 4b	S6
6. ¹ H and ¹³ C NMR spectra of $4c$	S7
7. ¹ H and ¹³ C NMR spectra of 4d	
8. ¹ H and ¹³ C NMR spectra of 5a	
9. ¹ H and ¹³ C NMR spectra of 5b	S10
10. ¹ H and ¹³ C NMR spectra of 5c	
11. ¹ H and ¹³ C NMR spectra of 5d	
12. ¹ H and ¹³ C NMR spectra of 7a	
13. ¹ H and ¹³ C NMR spectra of 7b	S14
14. ¹ H and ¹³ C NMR spectra of $7c$	\$15
15. ¹ H and ¹³ C NMR spectra of 7d	16

1. Materials

All chemical reagents and solvents were purchased from Sigma (St. Louis, MO, USA). Pyridine, ethanol and N,N-dimethylformamide (DMF) were freshly distilled over CaH₂ prior to use. All racemic analytes (Structure in Figure S1) were purchased either from Aldrich (Steinheim, Germany) or from Sigma (St. Louis, MO, USA).

Figure S1. The chemical structures of racemates studied in this paper.

2. Instrumentation

All synthetic intermediate compounds were routinely checked by infrared (IR) spectra (Shimadzu FT-IR 8101 M, Shimadzu Corporation, Kyoto, Japan). ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were obtained on a Bruker AVANCE 500 (Bruker Bio-Spin Corporation, Europe) working at 500 and 125 MHz, respectively; δ

in ppm relative to SiMe₄ as internal standard; coupling constants J in Hz; ¹³CNMR spectra were fully decoupled. The mass spectra of CD-cation were collected in positive modes in a single run from a Finniga/AM TSQ Quantum (Thermal, USA).

Beckman P/ACE MDO CE unit (Fullerton, CA, USA) was used for all CE separations. 50 µm ID, 375 µm OD fused silica capillary was used with a total length of 59.2 cm (49 cm to the detector). Detection of analytes was carried out simultaneously at 214 nm, 254 nm and 280nm by using variable-wavelength PDA (Photodiode Array, 190-300 nm) detector. The electrosmotic flow (EOF) was measured with methanol as neutral marker. Samples were introduced hydrodynamically into the capillary at 0.5 psi for 5 s. All experiments were performed under normal polarity with 15 kV applied voltage.

Background electrolytes (BGEs) were prepared with 50 mM acetate buffer (pH 5.5, 6.0) and sodium phosphate buffer (pH 6.5, 7.0). The stock racemates (structure shown in Figure S1) solution (50 μ g ml⁻¹) was prepared with methanol/water (50:50, v/v) mixture solution, filtered with 0.45 μ m syringe type Millipore membrane and sonicated prior to use. Acetate buffer was prepared by dissolving a desirable amount of sodium acetate in water, with its pH (5.5, 6.0) adjusted with acetic acid while sodium phosphate buffer was prepared with sodium phosphate and sodium hydroxide to get the required pH 6.5 and 7.0.

3. ¹H and ¹³C NMR spectra of 6^A-azido-6^C-mesitylenesulfonyl-β-cyclodextrin (Mess-N₃-CD, **2**)

4. ¹H and ¹³C NMR spectra of 6^{A} -azido- 6^{C} -methylimidazolium - β -cyclodextrin mesitylene sulfonate **4a**

5. ¹H and ¹³C NMR spectra of 6^{A} -azido- 6^{C} -ethylimidazolium- β -cyclodextrin mesitylene sulfonate **4b**

6. ¹H and ¹³C NMR spectra of 6^{A} -azido- 6^{C} -propylimidazolium- β -cyclodextrin mesitylene sulfonate **4c**

7. ¹H and ¹³C NMR spectra of 6^{A} -azido- 6^{C} -butylimidazolium- β -cyclodextrin mesitylene sulfonate **4d**

8. ¹H and ¹³C NMR spectra of 6^{A} -amino- 6^{C} -methylimidazolium- β -cyclodextrin mesitylene sulfonate **5a**

- 1.544 1.542 1.492 1.492 9.012 8.283 8.151 7.754 7.747 7.741 5.816 5.769 5.756 5.754 5.749 .885 550 884 723 419 433 798 781 827 561 ą 201 187 solvent residual peak of DMF solvent residual peak of Acetone solvent residual peak of DMF 무무 0.90 **→ 2.17** + <u>3.00</u> 4.61 **¥ 2.68** J 3.11 J 1.08 7.0 Т 8.0 6.0 5.0 3.0 2.0 1.0 0.0 4.0 9.0 ppm (f 1)
- 9. ¹H and ¹³C NMR spectra of 6^{A} -amino- 6^{C} -ethylimidazolium- β -cyclodextrin mesitylene sulfonate **5b**

10. ¹H and ¹³C NMR spectra of 6^{A} -amino- 6^{C} -propylimidazolium- β -cyclodextrin mesitylene sulfonate **5**c

11. ¹H and ¹³C NMR spectra of 6^{A} -amino- 6^{C} -butylimidazolium- β -cyclodextrin mesitylene sulfonate **5d**

12. ¹H and ¹³C NMR spectra of 6^{A} -ammonium- 6^{C} -methylimidazolium- β -cyclodextrin chloride **7a**

13. ¹H and ¹³C NMR spectra of 6^{A} -ammonium- 6^{C} -ethylimidazolium- β -cyclodextrin chloride **7b**

14. ¹H and ¹³C NMR spectra of 6^A-ammonium-6^C-propylimidazolium-β-cyclodextrin chloride **7c**

15. ¹H and ¹³C NMR spectra of 6^{A} -ammonium- 6^{C} -butylimidazolium- β -cyclodextrin chloride **7d**

