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1 Materials & Methods

All measurements have been carried out in an inverted home-built photothermal microscopy setup in forward detection
configuration. The setups consists of a heating (λh = 532 nm, Coherent Verdi) and a probe laser (λd = 635 nm, Coherent
ULN laser diode) both focused into the sample plane by a 100x/NA1.4 microscope objective lens (Olympus). The probe
light is collected by a second microscope objective (Olympus, 50x/NA 0.8) and imaged to a photodiode (Thorlabs, PDA36A-
EC) recording the transmitted detection laser power Pd . The photodiode signal is analyzed by a lock-in amplifier (Signal
Recovery 7280 DSP) to filter out the probe beam modulation on the frequency of the heating laser modulation at Ω =
300 kHz. The X and Y channels of the lock-in amplifier are digitized by an ADC (Jäger AdWin Gold). The phase-sensitive
experimental photothermal signal Φ̃ is gained as follows:

Φ̃ =
∆Pd

Pd
= cos(φ−φLI)

p

X 2+Y 2, tanφ =X/Y . (1)

Here, φLI is an artificial phase angle that can be set at the lock-in amplifier. To calibrate the setup scattering images of
immobilized gold nanoparticles (AuNPs) with a radius of R = 30 nm are taken at the excitation and detection wavelength,
respectively. The overlap of these two images was confirmed or, if necessary, adjusted. Then z -scans of the photothermal
signal were taken and fitted with the functional analytical approximation Φ to the photothermal signal

Φ(r) = Φ
�

z ,ρ
�

=Φ0 exp

 

−
2ρ2

ω2
ρ

!

[z 0− z ]exp

�

−
2z 2

ω2
z

�

(2)

to gain the lateral and axial parameters ωρ and ωz and the asymmetry parameter z 0. This signal-form is composed of a
positive and a negative half according to Φ=Φ++Φ− with Φ− (r) = Φ

�

z ,ρ
�

Θ(z − z 0) and Φ+ (r) = Φ
�

z ,ρ
�

Θ(z 0− z ) in which
Θ(z ) denotes the Heavyside function.

For the diffusion measurements the symmetric configuration of the photothermal signal (z 0 = 0) was chosen. The
sample in the photothermal correlation experiments was an aqueous solution of AuNPs of R = 14 nm, confined between
two cover-slides. In addition, the sample cell was sealed using polydimethylsiloxane (Sylgard 184) to avoid an evaporation
of the solvent. Photothermal signal time-traces were recorded at an acquisition rate of 50 kHz what corresponds to a time
resolution of 20µs. While every recorded event contributes to the ACF, events that contribute to the CCF are less often.
To ensure reasonable statistics, the length of each time-trace is at least 1 h at a particle concentration of 2.6 · 1010 ml−1.
Both lock-in channels X and Y were analyzed by their histograms and a possible DC-offset (AdWin) in the signal has to be
corrected. The phase-sensitive signal was calculated using Eq. 1. To achieve the symmetric signal calibration scenario and
a signal described by Eqn. 2 with z 0 = 0, the phase-sensitive photothermal signal histograms have been checked again to
be symmetric about the origin.

1

Electronic Supplementary Material (ESI) for RSC Advances
This journal is © The Royal Society of Chemistry 2013



2 CORRELATION FUNCTIONS 2

1.1 Data processing

For a discrete time-trace of N values Φ̃i was recorded in time-steps of ∆t , i.e. Φ̃i = Φ̃(i∆t ), we compute the correlation
functions from the experimental time traces via

GACF
�

j∆t
�

=
1
N

∑N
i Φ̃i Φ̃i+j

h

1
N

∑N
i

�

�Φ̃i

�

�

i2 −1 (3)

The histograms N
�

Φ̃
�

of the phase-sensitive signal traces have been fitted with a gaussian peakN
�

µΦ,σ2
�

with variance
σ2 and possibly non-zero mean µΦ. They have been shifted by µS to ensure zero-centered noise. The phase-sensitive ACF
G ps

ACF was then computed right-away according to Eqn. 3. For the magnitude auto-correlation function G abs
ACF the absolute

value of the phase-sensitive trace has been shifted by the mean of the thereby one-sided gaussian noise:

〈
�

�

�N
�

0,σ2
�

�

�

�〉= [2/π]1/2σ, (4)

i.e. by
�

�Φ̃i

�

�→
�

�Φ̃i

�

�− [2/π]1/2σ. This shifts the signal as well, and gives a reduced contrast as compared to the correct value
of phase-sensitive ACF, GACF (0), i.e. G abs

ACF (0) < G abs
ACF (0), and a decay to zero. For the computation of the single lobe auto-

correlation functions G+ACF and G−ACF and the cross-correlation functions G+−CCF and G−+CCF we have split the phase-sensitive
signal-trace further into Φ̃+i and Φ̃−i according to the following rule:

Φ̃±i =

(

Φ̃i if Φ̃i ≷ 0,

±
�

�N (0,σ2)
�

� if Φ̃i ≶ 0.
(5)

White gaussian noise N (0,σ2) of zero mean and variance σ2 with matching sign was written into each trace: Whenever
there is positive signal written into Φ̃+, negative noise is added to Φ̃−, and vice versa. Thereby, each channel consists of
positive or negative values only. These individual traces have been shifted by ± [2/π]1/2σ as well to ensure a total noise,
that is the artificially added and the signal-contained noise, with zero mean. In case of the single lobe ACFs, the denom-

inator in Eqn. 3 was replaced by the self-normalization
h

1
N

∑N
i Φ̃

±
i

i2
. For the cross-correlation, the signed timetrace Φ̃+ is

correlated with Φ̃−, and vice versa. All cross- and auto-correlation functions decay to zero, and the cross-correlation func-
tions obtained in this way start at zero, too. In case of the single lobe ACFs, the denominator in Eqn. 3 was replaced by the

self-normalization
h

1
N

∑N
i Φ̃

±
i

i2
.

The normalization of a noise-mean shifted signal which contains noise is approximately equal to the mean of the signal
itself, e.g. the correct normalization considered in the theory:

〈
�

�Φ̃N
�

�

shifted
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�Φ̃
�

�〉

2 Correlation Functions

2.1 Diffusion Propagator and Analytical Formulation

In order to obtain the theoretical (cross-)correlation function for brownian particles, the following 6-fold integral needs to
be computed:

G (τ) =

∫ ∫

Φa (r)Φb (r′)p (τ, r, r′)dr dr′

〈C 〉
�∫

|Φ(r)|dr
�2 (6)

Here, Φa and Φb depend on the type of correlation function considered, see table 1. The diffusion process in the presence
of an additional deterministic flow V (r) is described by the advection diffusion equation (ADE): ∂ C/∂ t =D∇2C −∇· (VC ).
Herein, D is the diffusion coefficient of the Brownian particles. The ADE is solved using the advection-diffusion propagator
p (τ, r, r′), i.e. the Green’s function of the ADE [?]:

p
�

τ, r, r′
�

=
exp (−|r− r′+Vτ|2/ [4Dτ])

(4πDτ)3/2
. (7)

It includes three terms in the argument of the exponential function. One is the squared distance between the position vec-
tors r and r′, the second is the scalar product of this distance vector with the flow velocity vector V, and the last term contains
the squared velocity vector. In cylindrical coordinates

�

ρ,φ, z
	

the distance squared may be written as |r− r′|2 = (z − z ′)2+
ρ2+ρ′2−2ρρ′ cos

�

φ−φ′
�

. This term is the only term in the free diffusion propagator. If flow is present, and an axial flow
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is considered only such that V= Vz ẑ, the two other terms amount to a factor of exp
�

−V 2
z τ/4D

�

exp (−2Vz (z − z ′)/4D). The
integrals with respect to the polar angles φ and φ′ and the radial coordinates ρ and ρ′ constitute a reoccuring part of the
integrals. This leaves only the z and z ′ integrations left to be done for the various correlation functions.

For lateral flow, cartesian coordinates were used and the advection-diffusion propagator:

p
�

τ, r, r′
�

=
exp

�

−
�

(x −x ′+Vxτ)2+
�

y − y ′
�2+(z − z ′+Vzτ)2

�

/ [4Dτ]
�

(4πDτ)3/2
. (8)

Table 1: Overview of various correlation functions computable from
the photothermal signal time-traces. Eqn. 6 was then used to obtain
analytical expressions, where Φ̃a and Φ̃b were substituted with the
corresponding signal given in the first column. Given are the sym-
bols used in the text without the optional Vz , Vx and z 0 superscripts.
Also indicated are the event types the various correlation functions
are sensitive to.

signal corr. type symbol event type section

Pd ACF G 3DG
ACF 3©, 4© 2.3

Φ̃ ACF GACF 3©, 4© 2.5
�

�Φ̃
�

� ACF G abs
ACF 3©, 4© 2.7

Φ̃+ ACF G+ACF 4© 2.8

Φ̃− ACF G−ACF 3© 2.8
¦

Φ̃+, Φ̃−
©

CCF G+−CCF 2© 2.6
¦

Φ̃−, Φ̃+
©

CCF G−+CCF 1© 2.6

Table 2: Overview of various introduced abbreviations
which appear in the analytical or numerical expres-
sions of the presented correlation functions

symbol expression

τD ω2
ρ/ (4D)

γ ωz /ωρ

Γ1

h

1+ τ
τD

i

Γ2

h

γ2+ τ
τD

i

Γ3

h

γ2+2 τ
τD

i

Z
p

2 z 0/
�

γωρ
�

a b/2 + 2/
�

γ2ω2
ρ

�

b 2τD

τ
/ω2

ρ

f 2 VzτD/ω2
ρ

K
�

b z ′− f −2a z 0
�

/
�

2
p

a
�

H
�

b z ′− f
�

/
�

2
p

a
�

2.2 Common factor to all considered correlation functions

The integrals with respect to the polar angles φ and φ′ and the radial coordinates ρ and ρ′ constitute a reoccuring part of
the integrals common to all evaluated correlation functions and yield

1

〈C 〉 (4πDτ)3/2

∫ 2π

φ,φ′=0

∫ ∞

ρ,ρ′=0

pρ,φ
�

ρ,ρ′,φ,φ′
�

exp

 

−
2
�

ρ2+ρ′2
�

ω2
ρ

!

dφdφ′ρdρρ′dρ′ =
ωρπ1/2

4〈C 〉
�

1+ τ
τD

��

τ
τD

�1/2
(9)

where pρ,φ = exp
�

−
�

ρ2+ρ′2−2ρρ′ cos
�

φ−φ′
��

/4Dτ
�

is the factor of the diffusion propagator which depends on these
coordinates. The exponential factor stems from the signal function being a gaussian in lateral direction for both FCS and
Twin-PhoCS.
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2.3 Regular FCS, i.e. 3D gaussian detection volume

In standard FCS, an azimuthally symmetric 3D-gaussian focus geometry is assumed, i.e. the detected fluorescence sig-

nal is assumed to be Pd (r) = P0 exp
�

−2ρ2/ω2
ρ

�

exp
�

−2z 2/ω2
z

�

, with a lateral and axial beam-waist of ωρ and ωz = γωρ ,

respectively, and one finds for the case of axial flow and lateral flow, i.e. for V=Vx x̂+Vz ẑ:

G 3DG,Vx ,Vz
ACF (τ) = exp

 

−
V 2

x τ
2

ω2
ρΓ1

!

exp

 

−
V 2

z τ
2

ω2
ρΓ2

!

γ

〈N 〉Γ1Γ
1/2
2

, (10)

where the effective particle number density in the focus is 〈N 〉= 〈C 〉V 3DG
eff . Note that some authors write

h

1+γ−2 τ
τD

i

instead

of Γ2, thus missing the factor of γwhich is present here. The effective focal volume for a 3D-Gaussian is given by

V 3DG
eff =

�∫

|Pd (r)|dr

�2

/

∫

|Pd (r)|2 dr=π3/2γω3
ρ . (11)

The contrast of the FCS correlation function is the inverse of the mean particle number within the effective focal volume,
i.e. G 3DG,Vx ,Vz

ACF (0) = 1/〈N 〉with 〈N 〉= 〈C 〉V 3DG
eff .

2.4 Common normalization in Twin-PhoCS

The normalization, i.e. the denominator in Eqn. 6, for the case of a twin-focus photothermal detection volume reads:

�∫

|Φ(r)|dr

�2

=





∫ 2π

0

dφ

∫ ∞

−∞

dz

∫ ∞

0

ρdρΦ0 |z 0− z |exp

�

−2z 2

ω2
z

�

exp

 

−2ρ2

ω2
ρ

!



2

(12)

=Φ2
0

�

π

4
γ2ω4

ρ

�2

×
n

exp
�

−2Z 2
��

1+Z exp
�

Z 2
�p
πErf (Z )

�2
o

≈ Φ2
0

�

π

4
γ2ω4

ρ

�2

×
�

1+2Z 2+O
�

Z 4
��

, (13)

where Erf (x ) = 2π−1/2
∫ x

0
exp (−t 2)dt is the error-function and the expansion is for Z � 1.

The effective focal volume defined as above (Eqn. 11) now with the PT signal function evaluates to:

V z 0
eff = 4

p
πγω3

ρ ×
¨

exp (−2Z 2)
�

1+
p
πZ exp (Z 2) Erf (Z )

�2

4Z 2+1

«

≈ 4
p
πγω3

ρ × [1−2Z 2+O (Z 4)]

→ 4
p
πγω3

ρ ×
π
4

. (14)

The limit corresponds to Z →±∞. The above expressions simplify for the symmetric configuration of the twin-focal vol-
ume, i.e. for z 0 =Z = 0 the term in the curly brackets becomes {. . .}= 1. The symmetric (Z = 0) twin-focal volume is simply
Veff = 4

p
πγω3

ρ .

2.5 Phase sensitive auto-correlation function, GACF

For the phase-sensitve signal the autocorrelation function in the most general situation of an asymmetric twin focus with
axial and lateral flow, i.e. V=Vx x̂+Vz ẑ, one finds explicitely:

G Vx ,Vz ,z 0
ACF = exp

 

−V 2
x τ

2

Γ1ω2
ρ

!

exp

 

−
V 2

z τ
2

Γ2ω2
ρ

!

1

4〈C 〉
p
πΓ1Γ

3/2
2 ω

3
ρ







exp (2Z 2)
�

4Z 2Γ2+γ2

�

1−2
V 2

z τ
2

Γ2ω2
ρ

��

�

1+
p
πZ exp

�

Z 2
�

Erf (Z )
�2







, (15)

G Vx ,Vz
ACF (τ) =GACF (τ)×exp

 

−V 2
x τ

2

Γ1ω2
ρ

!

exp

 

−V 2
z τ

2

Γ2ω2
ρ

!

1−
2V 2

z τ
2

Γ2ω2
ρ



 , (16)

GACF (τ) =
γ3

〈N 〉Γ1Γ
3/2
2

. (17)

The simpler cases of a symmetric twin-focal volume correlation function (z 0 = 0, Eqn. 16) and its corresponding form when
no flow is present (Vz = 0, Eqn. 17) have already been presented in the main article. The term in the curly brackets becomes
{. . .} = 4

π
Γ2 when Z → ±∞ while the effective volume becomes Veff → π3/2γω3

ρ such that the FCS expression, Eqn. 10, is

recovered. At zero lag time, i.e. when τ = 0, the term becomes {. . .} = γ2/V z 0
eff such that also here G Vx ,Vz ,z 0

ACF (0) = 1/〈N 〉 with
〈N 〉= 〈C 〉V z 0

eff holds true.
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τD τco

Z = 0.009

τD τco
τ -5/2

τ -3/2

Z = 0.09

,

Figure 1: Phase-sensitive ACF and the effect of z 0.

The difference of phase sensitive and absolute value ACF thus has to be negative, which is a direct consequence of the occur-
ring anti-correlating events in the ACF of the phase-sensitive signal. The phase-sensitive ACF decays therefore quicker ac-
cording to GACF ∝ (τ/τD )−5/2 for the ideal symmetric configuration, while all other functions including the cross-correlation
decay according to G ∝ (τ/τD )−3/2 at late times τ� τD . However, any finite asymmetry in the signal configuration will re-
sult in a net-signed detection function leading to a decay of the phase-sensitive ACF with a−5/2 power law at intermediate
times τD <τ<τco and −3/2 at later times τ>τco where the cross-over time is determined by τco/τD = γ2ω2

z /
�

8z 2
0

�

.

2.6 Cross-correlation function, G+−CCF

We here consider the cross-correlation (+ → −) function only with axial flow (V = Vz ẑ). Note that the reverse cross-
correlation (−→+) is connected to the expression here by the symmetry relation G−+,Vz ,z 0

CCF =G+−,−Vz ,−z 0
CCF :

G+−,Vz ,z 0
CCF =

8
�

τ
τD

�1/2
exp

�

− V 2
z τ

2

ω2
ρ

τD
τ

�

πγω2
ρ Γ1Γ3

�

4Z 2+1
�





∫ ∞

z 0

dz ′ exp
�

−a z ′2
�

exp
�

z 0
�

b z ′− f −a z 0
��

×exp
�

f z ′
��

z ′− z 0
�

¦

1−exp
�

K 2
�

K
p
π [1−Erf(K )]

©�

, (18)

G+−,Vz
CCF =

−8
Æ

τ
τD

exp
�

− V 2
z τ

2

ω2
ρ

τD
τ

�

〈N 〉πγω2
ρ Γ1Γ3

∫ ∞

0

dz ′ exp
�

−a z ′2
�

exp
�

f z ′
�

z ′
¦

1−exp
�

H 2
�

H
p
π [1−Erf(H )]

©

, (19)

G+−CCF (τ) =

γ2

2
arctan

�

2
γ2

h

τ
τD
Γ2

i1/2
�

−
h

τ
τD
Γ2

i1/2

〈N 〉πΓ1Γ
3/2
2 /γ

. (20)

To avoid effects due to possibly unstable concentrations in the sample over the period of measurements, it is often con-
venient to normalize the cross-correlation functions by the contrast of the auto-correlation functions (1/〈N 〉). Then, the
shape and magnitude of the CCF is only affected by the flow present in the sample. For small axial flow velocities the cor-
rection to the ACFs is of second order in the velocity while the CCF changes already in first order and is thus intrinsically
more sensitive than the ACFs. This will be shown in the following sections:

The propagator for diffusion with flow in the limit of small axial flow velocity V=Vz ẑ reads:

p
�

τ, r, r′, Vz
�

=
1

(4πDτ)3/2
exp

�

−
(r− r′)2+2 V · (r− r′)τ+V 2τ2

4Dτ

�

≈ exp

�

−
V 2

z τ

4D

�



1−
2VzτD

ω2
ρ

�

z − z ′
�



p
�

τ, r, r′
�

(21)
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Figure 2: Approximation of the CCF amplitude and CCF difference.

such that to first order, the correlation functions remain the same plus possibly some additional function. As it turns out,
the corrective term to the CCF is of first order in the flow velocity, i.e. O

�

VzτD/ωρ
�

, while the correction to the auto-
correlation functions is of smaller second order. The following expressions hold for small enough flow-velocities, i.e. the
first, third and fourth order expressions are accurate to within a few percent for VzτD/ωρ < 0.1,< 0.3 and< 0.5, respectively.

G+−,Vz
CCF ≈ exp

 

−V 2
z τ

2
D

ω2
ρ

τ

τD

!







G+−CCF −
�

VzτD

ωρ

� 2γ2
�

τ
τD

�2

p
πΓ1Γ2

2Γ
1/2
3

−
�

VzτD

ωρ

�3 2γ4
�

τ
τD

�3 h

9 τ
τD
+5γ2

i

3
p
πΓ1Γ3

2Γ
3/2
3

(22)

−
�

VzτD

ωρ

�2 γ
3

2

�

τ
τD

�

�

4
�

τ
τD

�2
−γ4

�

arctan
�

2
γ2

Æ

τ
τD
Γ2

�

+
h

4 τ
τD
+γ2

i

Æ

τ
τD
Γ2

πΓ1Γ
5/2
2 Γ3

−
�

VzτD

ωρ

�4 γ5
�

τ
τD

�2

24πΓ1Γ4
2Γ

2
3

�

160

�

τ

τD

�7/2

+48π

�

τ

τD

�3

Γ1/2
2 +272γ2

�

τ

τD

�5/2

+36πγ2

�

τ

τD

�2

Γ1/2
2

+124γ4

�

τ

τD

�3/2

+12γ6

�

τ

τD

�1/2

−3πγ6Γ1/2
2 −6

�

4
τ

τD
−γ2

�

Γ1/2
2 Γ

2
3 arctan

�

γ2

2
/

Ç

τ

τD
Γ2

��

−
�

VzτD

ωρ

�5 γ6
�

τ
τD

�4 �
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�

τ
τD

�2
+126γ2

�

τ
τD

�

+35γ4

�

15
p
πΓ1Γ4

2Γ
5/2
3







The difference of the CCFs to fifth order O
�

VzτD/ωρ
�5

reads:

G+−,Vz
CCF −G−+,Vz

CCF =G+−,−Vz
CCF −G+−,+Vz

CCF ≈−exp

 

−V 2
z τ

2
D

ω2
ρ

τ

τD

!

4γ2
�

τ
τD

�2

p
πΓ1Γ2

2Γ
1/2
3

× (23)

(

�

VzτD

ωρ

�

+

�

VzτD

ωρ

�3
γ2

3Γ3Γ2

�

τ

τD

��

9
τ

τD
+5γ2

�

+

�

VzτD

ωρ

�5
γ4

30Γ2
3Γ

2
2

�

τ

τD

�2
�

115

�

τ

τD

�2

+126γ2

�

τ

τD

�

+35γ4

�

)

.

The intrinsic timescale of the CCF has to be related to a characteristic distance given by the separation of the two peaks δ
of the twin-focal volume δ2 = z 2

0 +γ
2ω2

ρ . Indeed, τz /τD = 1.24+0.31γ2 fits well for γ> 2, which is the typical case.

The relative contrast decreases for increasing longitudinal focus-spread as G+−CCF (τz )/GACF (0)≈
�

17.4+8.27γ2
�−1. Since this

expression is independent on the lateral focus-sizeωρ , it may be used to estimate the beam-shape parameter γ.
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γ

γ 2)

γ

γ 2

Figure 3: Contrast of the CCF and the characteristic cross-correlation time.

2.7 Absolute value auto-correlation functions, G abs
ACF

The auto-correlation function of the absolute value of the photothermal signal may be computed numerically only in case
of flow or asymmetry. We find

G abs,Vz ,z 0
ACF =

4
�

τ
τD

�1/2
exp

�

2Z 2− V 2
z τ

2

ω2
ρ

τD
τ

�

〈C 〉π3/2γ2ω5
ρ Γ1Γ3

�

1+
p
πZ exp

�

Z 2
�

Erf (Z )
�2

�∫ ∞

−∞

dz ′ exp
�

−a z ′2
�

×exp
�

z 0
�

b z ′− f −a z 0
��

exp
�

f z ′
�

|z ′− z 0|
¦

1+exp
�

K 2
�

K
p
πErf(K )

©�

, (24)

G abs,Vz
ACF =

4
�

τ
τD

�1/2
exp

�

− V 2
z τ

2

ω2
ρ

τD
τ

�

〈C 〉π3/2γ2ω5
ρ Γ1Γ3

∫ ∞

−∞

dz ′ exp
�

−a z ′2+ f z ′
�

|z ′|
¦

1+exp
�

H 2
�

H
p
πErf (H )

©

, (25)

G abs
ACF =

γ2

2

h

π
2
−arctan

�

2
γ2

Æ

τ
τD
Γ2

�i

+
Æ

τ
τD
Γ2

〈C 〉π3/2Γ1Γ
3/2
2 ω

3
ρ

. (26)

where Eqns. 25 and 26 are special cases of Eqn. 24. Indeed, the statement that GACF (τ)−G abs
ACF (τ) = 4G+−CCF (τ) holds true,

which was a claim of the paper, can be seen.
For small axial flow velocities the absolute value ACF reads:

G abs,Vz
ACF ≈ exp

 

−V 2
z τ

2
D

ω2
ρ

τ

τD

!









G Abs
ACF+

�

VzτD

ωρ

�2

2γ3

�

τ

τD

� 2
�

τ
τD

�1/2�

4 τ
τD
+γ2

�

Γ1/2
2 +

�

γ4−4
�

τ
τD

�2�h
π
2
−arctan

�

2
γ2

Æ

τ
τD
Γ2

�i

πΓ3Γ1Γ
5/2
2









,

(27)
which, as for the phase-sensitive ACF Eqn. 15, shows a quadratic dependence on the flow-velocity Vz .
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3 RADIATION PRESSURE 8

2.8 Single lobe auto-correlation functions, G+ACF

The following ACFs use the correct self-normalization as mentioned in the data processing section. For the symmetric

configuration this means a normalization by
�∫

Φ+ (r)dr
�2
=
�

π
8
ω2

zω
2
ρ

�2
.

G+,Vz ,z 0
ACF =

8
�

τ
τD

�1/2
exp

�

2Z 2− V 2
z τ

2

ω2
ρ

τD
τ

�

〈C 〉π3/2γ2ω5
ρ Γ1Γ3

�

1+
p
πZ exp

�

Z 2
�

[1+Erf (Z )]
	2

�∫ z 0

−∞

dz ′ exp
�

−a z ′2
�

×exp
�

z 0
�

b z ′− f −a z 0
��

exp
�

f z ′
��

z 0− z ′
�

¦

1−exp
�

K 2
�

K
p
π [1−Erf(K )]

©�

, (28)

G+,Vz
ACF =

−8
�

τ
τD

�1/2
exp

�

− V 2
z τ

2

ω2
ρ

τD
τ

�

〈C 〉π3/2γ2ω5
ρ Γ1Γ3

∫ 0

−∞

dz ′ exp
�

−a z ′2+ f z ′
�

z ′
¦

1−exp
�

H 2
�

H
p
π [1−Erf (H )]

©

, (29)

G+ACF =

γ2

2

h

π−arctan
�

2
γ2

Æ

τ
τD
Γ2

�i

+
Æ

τ
τD
Γ2

〈C 〉π3/2ω3
ρ Γ1Γ

3/2
2

, (30)

where Eqns. 29 and 30 are special cases of Eqn. 28. The contrast for the symmetric cases (z 0 = 0) is given by G+,Vz
ACF (0) =

G+ACF (0) = 1/〈N 〉 with 〈N 〉 = 〈C 〉Veff. Here, the effective volume is half that of the symmetric dual lobe focal volume: Veff =
2
p
πγω3

ρ . The negative lobe ACF, G−ACF, is connected by symmetry to the above expression via G−,Vz ,z 0
ACF =G+,Vz ,−z 0

ACF .

2.9 Note on the implemenation of the CFs

Notice that |H | and H 2 get very large for small τ�τD and moderate z such that z/τ�Vz :

H =
b z − f

2
p

a
=

��

τD
τ

�

z −VzτD

�

1
ωρ

Æ
�

τD
τ

�

+ 2
γ2

→
z

ωρ

Ç

τD

τ
(31)

Thereby, the term exp (H 2) → ±∞ becomes non-computable for regular programs for small lag-times. However, a z 2 →
z 2

ω2
ρ

�

τD
τ

�

grows large in the same way. Thus, to circumvent the numerical problem, the term exp (−a z ′2)exp (H 2) should be

written as exp (H 2−a z ′2) and the argument be computed first.

2.10 Considering twin focus with two different beam-waists

If two distinct lobe-widths are assumed, which can be a direct consequence of the in-plane asymmetry of the tightly focused
laser-beam fields if they display strong aberration, and we setωρ,− = g ωρ,+ and still use τD =ωρ,+/ (4D)we find

(4πDτ)−3/2

〈C 〉

∫ 2π

φ,φ′=0

∫ ∞

ρ,ρ′=0

Φρ dφdφ′ρdρρ′dρ′ [1−Θ(z )]Θ
�

z ′
�

exp

 

−
2ρ2

ωρ,+
−

2ρ′2

ω2
ρ,−

!

=
ωρ,+π1/2 g 2

4〈C 〉
�

1+g 2

2
+ τ
τD

��

τ
τD

�1/2
(32)

and we find instead the following normalization:
h

πω2
z ω

2
ρ,+

�

1+ g 2
�

/8
i2

. This result, however, may be used in the case of

the evaluation of the cross-correlation function only and was not used in the analysis presented in the paper.

3 Radiation Pressure

3.1 Radiation pressure forces

The axial force within the generalized Lorenz-Mie theory (GLMT) is given by c Fz = n m I0σpr,z , where σpr,z is the radiation
pressure cross-section (given in detail in ref. [?, ?]), c is the speed of light and I0 = 2P0/πω2

0 is the focus intensity of the
Gaussian beam. In case of a small particle, i.e. small size parameter x = 2πn m R/λ � 1, and large skin-depth δs � R
as compared to the particle size (where δ−2

s = k 2 Im
p
εp holds, and εp is the complex permittivity of the particle), the
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3 RADIATION PRESSURE 9

Rayleigh-Approximation (RA) permits the evaluation of the radiation forces via

total force: Frad = F abs
rad êz + F sca

rad êz +Fgrad
rad , (33)

absorption force: F abs
rad =

n m

c
I (r)σpw

abs with σ
pw
abs =−k Im (α) , (34)

scattering force: F sca
rad =

n m

c
I (r)σpw

sca with σpw
sca = k 4 |α|2 /6π, (35)

gradient force: Fgrad
rad =

n m

2c
|α|∇I (r) , (36)

withσpw
abs andσpw

sca being the plane wave Rayleigh-regime absorption and scattering cross-sections expressed as a function of
the complex polarizabilityα of the particle of permittivity εn =

p
n m and effective volume V ,α= 3V

�

εp −εm

�

/
�

εp +2εm

�

.
Also, k = 2πn m /λ is the wave-number in the medium. The deviation of the RA with regard to the GLMT calculation as
observed in table 3 is expected since the skin-depth of Gold at this wavelength, δs = 38 nm, is comparable to the particle
dimensions used here. As a calculation check, the forces and absorption cross-section for a very small particle (R = 5 nm)
has been added where both theories agree. Between the absorption cross-sections for the heating laser beam wavelength
and the detection beam wavelength a factor 24 and 18 are found for R = 14nm and R = 30nm, respectively.

Table 3: Axial Radiation Pressures at z = 0 on AuNPs, n m = 1.33, P = 1.0 mW.

Wavelength λ [nm] ω0 [nm] Radius R [nm] Fz (GLMT / RA) σabs [m2] (GLMT / RA)

532 215 14 59 fN/62 fN 7.5×10−16 /9.9×10−16

532 215 30 733 fN/757 fN 7.6×10−15 /7.8×10−15

635 266 14 1.7 fN/1.8 fN 3.1×10−17 /4.0×10−17

635 266 30 44 fN/35 fN 4.1×10−16 /4.0×10−16

635 104 5 5.28×10−20 N/5.22×10−20 N 1.86×10−18 /1.84×10−18

3.2 Hot Brownian motion and drag

The following parameters for water were used to get the curve in Fig. 4 b) [?, ?]: Thermal conductivity κ = 0.63 Wm−1K−1,
viscosity η (T ) = η∞ exp (A/ (T −TVF)), TVF = 152 K, A = 497, η∞ = 2.98× 10−5 Nsm−2. The beam shape parameters were
obtained using the GLMT framework as explained in detail in [?]. After the calibration with immobilized AuNPs in a PDMS
matrix the only parameters changed were NAill = 1.33 to account for the total internal reflection at the water-glass interface
and n 2 = 1.33 as well as dn/dT = 2.2× 10−4 K−1 to change from PDMS to water. A focal depth of d = 15µm was taken as
in the experiment. This immediately gives σE

ill = 3.99× 10−6m2, σE
abs,h = 1.1× 10−7m2, σE

abs,d = 3.7× 10−9m2 and the beam
shape parameters γ= 3.65 andωρ = 197 nm.

∆T = cT,λ
σE

abs

σE
ill

Pinc,h

4πκR
(37)

with these values we obtained, using k B = 1.38×10−23 J/K and R = 30 nm and θ =∆T / (T0−TVF)

∆THBM ≈ T0+
1

2

∆T

T0
+
�

ln
η0

η∞
−1

�

∆T 2

12T 2
0

+O
�

∆T 3

T 3
0

�

(38)

η0

ηHBM
≈ 1+

193

486

�

ln
η0

η∞

�

θ −
�

56

243
ln
η0

η∞
−

12563

118098
ln2 η0

η∞

�

θ 2+O
�

θ 3
�

(39)

DHBM =
k B THBM

6πηHBMR
(40)

τD,HBM =
ω2
ρ

4DHBM
=

3πηHBMRω2
ρ

2k B THBM
(41)
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4 TWIN-PHOCS IN LIVING CELLS 10

3.3 Radiation pressure induced flow

The axial flow velocity in the ADE will follow the spatial intensity pattern of the heating laser.

V (r) =
Frad (r)

6πηHBM (∆T (r))R
(42)

Since it is primarily the heating-laser which transfers its energy and thus also its momentum to the particle, the flow
induced will primarily be axial and heating laser induced. Therefore, the simplifying assumption of a constant (effective,
see definition of ζ in the next section) axial flow was used in the discussion in the main article:

V (r) ≡ ζV ≈ ζ
Fz ,rad (z = 0)

6πηHBMR
ẑ (43)

3.4 Effective parameters for Gaussian heating and pushing

Since the radiation-pressure induced axial flow velocity V = Vz ẑ and the induced temperature ∆T are non-uniform in
space when a focused laser beam is used, an effective value which is smaller than the peak value for both effects obtained
in the focus is expected to be extracted from the data when analyzed with the correlations function with constant Vz . If
the resonant heating laser beam focused in the coordinate origin is assumed to be the major contribution, this means that
V eff

z = ζVz ,0 and ∆T eff = ζ∆T with some ζ < 1 and where Vz ,0 and ∆T are the values for the induced flow velocity and the
temperature-increment when the particle is in the focus. A 3D-Gaussian profile may be used to estimate the value of ζ via

ζ≈

∫

Vz (r)× I (r)dr
∫

I (r)dr
/Vz ,0 =

∫∞

0
dρ
∫ 2π

0
dφ
∫∞

−∞
dz
h

exp
�

− 2ρ2

ωρ

�

exp
�

− 2z 2

ωz

�i2

∫∞

0
dρ
∫ 2π

0
dφ
∫∞

−∞
dz exp

�

− 2ρ2

ωρ

�

exp
�

− 2z 2

ωz

� =
1

2
p

2
≈ 0.35 (44)

4 Twin-PhoCS in living Cells

Photothermal measurements have been carried out in MCF-10A cells. For topographical orientation the scattering signal of
the detection laser was recorded as well. The images are taken by raster scanning the whole sample. AuNP were prepared
according to [?] and mixed to the cell medium. The cells were incubated for 4 h with this AuNP-rich medium. The left
column of figure 4 shows the scattering images of a cell that are superimposed with the photothermal signal of the AuNPs
(red). In the surrounding medium red lines or single red pixels are dominant that corresponds to AuNP diffusing through
the detection volume while scanning the sample. In the cell fixed AuNP can be detected (red circles). The right column of
figure 4 shows z -scans through the sample. The green line marks the border between cell and the surrounding medium.
The twin-focus of the photothermal can be identified for fixed AuNPs even in the cell volume. The bottom graph shows two
axial line scans through the position of a AuNP at the glass interface (red) and in the cell (black).
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Figure 4: (left) Scattering images of a MCF-10A cell superimposed with the pt signal of diffusing AuNPs in the medium
(red lines) and of bound AuNPs in the cell (filled red circles). (right) zx-scans of the scattering and the pt signal (top), pt
(middle), line scan through a fixed AuNP on the glass surface (bottom red) and through a AuNP in the cell (bottom, black).
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