- 1 -

A facile route to functionalised, protic and chiral ionic liquids based on the triaminocyclopropenium cation

Owen J. Curnow,* Kelvin J. Walst and Ruhamah Yunis

Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

5

20

25

Supplmentary material

General procedures

All reagents and solvents were obtained from commercial sources. Liquid reagents and solvents were typically distilled under a dinitrogen atmosphere prior to use.

10 All operations were performed using standard Schlenk techniques with a dinitrogen atmosphere in order to reduce exposure to water.

¹H- and ¹³C{¹H}-NMR spectra were collected on a Varian Unity-300 operating at 300 and 75 MHz respectively, or on a Varian INOVA-500 operating at 500 and 126 MHz respectively, in CDCl₃, referenced to residual solvent peaks.

15 DSC was performed on a Perkin Elmer Q100. Samples of mass 5-20 mg were sealed in a vented aluminium pan and placed in the furnace with a 50 mL/min nitrogen stream; the temperature was raised at 10 °C/min.

Viscosities were measured on a Brookfield-Wells cone-and-plate viscometer operating at $0.005 - 0.2 \text{ s}^{-1}$ rotation speed range.

TGA data were collected on dried samples using a TA Instruments SDT Q600 at 10 °C/min after further drying at 100 °C for one hour in the instrument.

Electrospray mass spectrometry was carried out on a Micromass LCT, with samples dissolved in acetonitrile.

Water contents were determined by Karl Fischer titration using a Metrohm 831 KF coulometer.

diameter) working electrode, a platinum wire counter electrode and a silver reference electrode.

Chloride contents were determined using a AutolabEco Chemie, with associated GPES software, under a dinitrogen atmosphere. The electrodes were either a glassy carbon (3 mm diameter) or platinum (1 mm

- 2 -

Microanalysis was performed by the Campbell Microanalytical Laboratory, Department of Chemistry, University of Otago, Dunedin, New Zealand.

Bis(diethylamino)cyclopropenone, (Et₂N)₂C₃O

KOH (300 g) was dissolved into water (4 L). Tris(diethylamino)cyclopropenium chloride (42 g, 0.15 mol)
was added to the solution, and heated to 70 °C for 18 h. Organic compounds were extracted from aqueous solution using CH₂Cl₂ (3 x 250 mL). CH₂Cl₂ removed *in vacuo* and neutralized using a small amount of HCl. Ethanol (25 mL) added to allow filtering to remove an insoluble impurity, followed by removal of the ethanol *in vacuo*. Addition of acetone (75 mL) precipitated KCl, which was filtered off. Acetone was removed *in vacuo*, yielding a dark orange liquid (22 g, 77%). ¹H NMR (300 MHz, CDCl₃): δ 3.21 (q, ³J_{HH}
= 7.2 Hz, 8H, NCH₂CH₃), 1.20 (t, ³J_{HH} = 7.2 Hz, 12H, NCH₂CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 133.74 (CO), 119.32 (C₂), 46.01 (NCH₂CH₃), 14.18 (NCH₂CH₃).

General preparation of methylsulfate triaminocyclopropenium salts from cyclopropenone

Triaminocyclopropenium methylsulfate salts were prepared from the respective diaminocyclopropenone.
The cyclopropenone was dried, typically by using an *iso*-propanol or ethanol azetrope. Dimethylsulfate was added while under a dry, inert atmosphere, and the solution was then stirred for approximately 1 h. An excess of a primary or secondary amine was then added, and the mixture was stirred for a further 1 h. Excess amine was removed by washing with diethylether or petroleum ether and ammonium salts were removed by water-chloroform extractions.

20 (1) Bis(diethylamino)dimethylaminocyclopropenium methylsulfate, [C₃(NEt₂)₂(NMe₂)]MeSO₄

Cyclopropenone $(\text{Et}_2\text{N})_2\text{C}_3\text{O}$ (8.91 g, 45.5 mmol), Me₂SO₄ (8.60 g, 68.2 mmol) and HNMe₂ (6.80 g, 150 mmol) were reacted as described in the general synthetic procedure and gave a yellow liquid (5.72 g, 37.6%). ¹H NMR (300 MHz, CDCl₃): δ 3.68 (s, 3H, MeSO₄), 3.40 (q, ³*J*_{HH} = 7.3 Hz, 8H, NC*H*₂CH₃), 3.17 (s, 6H, NC*H*₃), 1.27 (t, ³*J*_{HH} = 7.2 Hz, 12H, NCH₂C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 117.83 (C₁), 116.31 (C₂), 54.02 (CH₃SO₄), 47.28 (NCH₂CH₃), 42.07 (CH₃), 14.07 (NCH₂CH₃).

25

$(2) Bis(diethylamino) dimethylaminocyclopropenium bis(trifluoromethanesulfonyl) amide, \\ [C_3(NEt_2)_2(NMe_2)]NTf_2$

 $[C_3(NEt_2)_2(NMe_2)]MeSO_4$ (2.74 g, 8.18 mmol) was stirred with LiNTf₂ (8.0 g, 28.0 mmol) in H₂O (200 mL). The product was extracted with Et₂O (200 mL), washed with H₂O (3 x 200 mL) and dried in vacuo to

25

- 3 -

yield a pale yellow liquid (2.63 g, 63.7%). ES-MS⁺: m/z 224.21 (100%, M⁺). ¹H and ¹³C NMR as for $[C_3(NEt_2)_2(NMe_2)]MeSO_4$ with an alternative peak in the ¹³C NMR due to NTf_2^- replacing $MeSO_4^-$.

(3) Bis(diethylamino)dimethylaminocyclopropenium dicyanoamide, [C₃(NEt₂)₂(NMe₂)]DCA

 $[C_3(NEt_2)_2(NMe_2)]MeSO_4$ (4.34 g, 13.0 mmol) was stirred with NaDCA (5.60 g, 62.9 mmol) in H₂O (100

5 mL). The product was extracted with chloroform (100 mL), washed with H_2O (3 x 100 mL) and dried in vacuo to yield a pale yellow liquid (3.24 g, 86.0%). ¹H and ¹³C NMR as for [C₃(NEt₂)₂(NMe₂)]MeSO₄ with an alternative peak due to DCA replacing MeSO₄. MS⁺ as for [C₃(NEt₂)₂(NMe₂)]TFSA.

(4) Tris(diethylamino)cyclopropenium dicyanoamide, [C₃(NEt₂)₃]DCA

 $[C_{3}(NEt_{2})_{3}]Cl (8.30 \text{ g}, 28.3 \text{ mmol}) \text{ was stirred with NaDCA (9.50 g}, 107 \text{ mmol}) in H_{2}O (100 \text{ mL}). The product was extracted with chloroform (150 mL), washed with H_{2}O (3 x 100 mL) and dried$ *in vacuo* $to yield an orange liquid (7.88 g, 85.8%). ¹H, ¹³C NMR and MS⁺ as for [C_{3}(NEt_{2})_{3}]Cl.$

$(5) \qquad Bis(diethylamino) dibutylaminocyclopropenium methylsulfate, [C_3(NEt_2)_2(NBu_2)] MeSO_4$

Cyclopropenone (Et₂N)₂C₃O (6.23 g, 31.8 mmol), Me₂SO₄ (4.40 g, 34.9 mmol) and HNBu₂ (4.91 g, 38.0 mmol) were reacted as described in the general synthetic procedure and gave a dark orange liquid (6.31 g, 47.4%). ¹H NMR (300 MHz, CDCl₃): δ 3.69 (s, 3H, MeSO₄), 3.40 (q, ³*J*_{HH} = 7.1 Hz, 8H, NC*H*₂CH₃), 3.28 (t, ³*J*_{HH} = 7.91 Hz, 4H, NC*H*₂CH₂), 1.60 (m, 4H, NCH₂C*H*₂), 1.19–39 (m, 16H, NCH₂CH₂C*H*₂ and NCH₂C*H*₃), 0.93 (t, ³*J*_{HH} = 7.33 Hz, 6H, CH₂CH₂C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 116.76 (C₁), 116.64 (C₂), 54.35 (CH₃SO₄), 53.17 (NCH₂CH₂), 47.35 (NCH₂CH₃), 31.28 (NCH₂CH₂), 20.10 (NCH₂CH₂C*H*₂), 14.54 (NCH₂C*H*₃), 14.00 (CH₂CH₂C*H*₃).

20 (6) Bis(diethylamino)dibutylaminocyclopropenium bis(trifluoromethanesulfonyl)amide, [C₃(NEt₂)₂(NBu₂)]NTf₂

 $[C_3(NEt_2)_2(NBu_2)]MeSO_4$ (7.35 g, 17.5 mmol) was stirred with LiNTf₂ (10.0 g, 34.8 mmol) in H₂O (150 mL). The product was extracted with chloroform (150 mL), washed with H₂O (3 x 150 mL) and dried *in vacuo* to yield a dark orange liquid (6.71 g, 65.2%). ¹H and ¹³C NMR as for $[C_3(NEt_2)_2(NBu_2)]MeSO_4$ with an additional peak in the ¹³C NMR due to NTf₂⁻.

$(7) \qquad Bis(diethylamino) dibutylaminocyclopropenium dicyanoamide, [C_3(NEt_2)_2(NBu_2)] DCA$

 $[C_3(NEt_2)_2(NBu_2)]MeSO_4$ (6.31 g, 15.0 mmol) was stirred with NaDCA (4.00 g, 44.9 mmol) in H₂O (150 mL). The product was extracted with chloroform (150 mL), washed with H₂O (3 x 150 mL) and dried *in vacuo* to yield a dark orange liquid (5.05 g, 90.0%). ¹H and ¹³C NMR as for $[C_3(NEt_2)_2(NBu_2)]MeSO_4$

30 with an additional peak in the 13 C NMR due to DCA.

- 4 -

(8) Bis(diethylamino)dihexylaminocyclopropenium methylsulfate, [C₃(NEt₂)₂(NHex₂)]MeSO₄

Cyclopropenone (Et₂N)₂C₃O (5.53 g, 28.2 mmol), Me₂SO₄ (5.33 g, 42.3 mmol) and HNHex₂ (9.03 g, 48.7 mmol) were reacted as described in the general synthetic procedure and gave an orange liquid (10.9 g, 81.1%). ¹H NMR (300 MHz, CDCl₃): δ 3.69 (s, 3H, MeSO₄), 3.41 (q, ³J_{HH} = 7.3 Hz, 8H, NCH₂CH₃), 3.27

5 (t, ${}^{3}J_{HH} = 8.5 \text{ Hz}, 4\text{H}, \text{NCH}_{2}\text{C}_{5}\text{H}_{11}$), 1.60 (m, 4H, NCH₂CH₂C₄H₉), 1.19–35 (m, 24H, N(CH₂)₂(CH₂)₃CH₃ and NCH₂CH₃), 0.86 (t, ${}^{3}J_{HH} = 6.5 \text{ Hz}, 6\text{H}, \text{N}(\text{C}_{5}\text{H}_{10})\text{CH}_{3}$). ${}^{13}\text{C}$ NMR (75 MHz, CDCl₃): δ 116.45 (C₁), 116.38 (C₂), 54.26 (CH₃SO₄), 53.17 (NCH₂C₅H₁₁), 47.10 (NCH₂CH₃), 31.39 (NCH₂CH₂C₄H₉), 29.02 (NC₂H₄CH₂C₃H₇), 26.25 (NC₃H₆CH₂C₂H₅), 22.47 (NC₄H₈CH₂CH₃), 14.29 (NCH₂CH₃), 13.91 (NC₅H₁₀CH₃).

10 (9) Bis(diethylamino)dihexylaminocyclopropenium bis(trifluoromethanesulfonyl)amide, [C₃(NEt₂)₂(NHex₂)]NTf₂

[C₃(NEt₂)₂(NHex₂)]I samples contaminated with (Et₂N)₂C₃O, prepared by treatment of (Et₂N)₂C₃O with excess EtI followed by removal of EtI by washing with diethylether, addition of HNHex₂, and further washing with diethylether, were combined and a large excess of LiNTf₂ (20 g, 69.7 mmol) in H₂O (300 mL) was added. The product was extracted with chloroform (300 mL) and washed with H₂O (2 x 300 mL). (Et₂N)₂C₃O was removed by washing with petroleum ether/diethylether mix (1:1, 3 x 100 mL) and the product was dried *in vacuo* to yield a dark brown liquid (4 g). ¹H and ¹³C NMR as for [C₃(NEt₂)₂(NHex₂)]MeSO₄ with an alternative peak in the ¹³C NMR due to NTf₂⁻ replacing MeSO₄⁻.

(10) Bis(diethylamino)dihexylaminocyclopropenium dicyanoamide, [C₃(NEt₂)₂(NHex₂)]DCA

20 [C₃(NEt₂)₂(NHex₂)]MeSO₄ (10.9 g, 22.9 mmol) was stirred with NaDCA (7.50 g, 84.2 mmol) in H₂O (150 mL). The product was extracted with chloroform (150 mL), washed with H₂O (4 x 100 mL) and dried *in vacuo* to yield an orange liquid (8.86 g, 90%). ¹H and ¹³C NMR as for [C₃(NEt₂)₂(NHex₂)]MeSO₄ with an alternative peak in the ¹³C NMR due to DCA replacing MeSO₄.

(11) Bis(diethylamino)dihexylaminocyclopropenium iodide, [C₃(NEt₂)₂(NHex₂)]I

Dihexylamine (1.72 mL, 7 mmol) was added to a solution of [C₃(NEt₂)₂(OEt)]I (2 g, 5.6 mmol) (prepared as described above for [C₃(NEt₂)₂(NBu₂)]I) in dichloromethane (10 mL) and stirred for 2 h. Dichloromethane was removed *in vacuo*. The product was washed several times with diethyl ether to remove unreacted amine. This gave a yellow liquid (2.5 g, 87%). ¹H and ¹³C NMR as for [C₃(NEt₂)₂(NHex₂)]MeSO₄ with no peaks due to MeSO₄.

(12) Bis(diethylamino)dihexylaminocyclopropenium trifluoromethylsulfonate, $[C_3(NEt_2)_2(NHex_2)]OTf$

Dried bis(diethylamino)cyclopropenone (1.14 g, 6 mmol) was stirred with MeCF₃SO₃ (0.8 mL, 8 mmol) in dry dichloromethane for 2 h in an inert atmosphere. Solvent was removed *in vacuo*. The mixture was

5 washed with dry diethyl ether several times to remove excess MeCF₃SO₃ and cyclopropenone. This gave an orange viscous oil of [C₃(NEt₂)(OMe)]CF₃SO₃ which was then stirred with Hex₂NH (1.23 mL, 5.2 mmol) for 2 h. The mixture was dissolved in chloroform:ethanol (2:1) (30 mL) and the product was washed with water (3x30 mL) to remove ammonium salts. Solvent was removed in vacuo to give a brown oil (1.6 g, 77%). ¹H, ¹³C NMR and MS⁺ as for [C₃(NEt₂)₂NHex₂]MeSO₄.

$10 \quad (13) \quad Bis(diethylamino) diallylaminocyclopropenium methylsulfate, \\ [C_3(NEt_2)_2(N(CH_2CHCH_2)_2)] MeSO_4$

Cyclopropenone $(Et_2N)_2C_3O$ (7.54 g, 38.5 mmol), Me₂SO₄ (6.27 g, 49.7 mmol) and HN(CH₂CHCH₂)₂ (6.30 g, 64.8 mmol) were reacted as described in the general synthetic procedure and gave an orange liquid (7.44 g, 50%). ¹H NMR (CDCl₃, 500 MHz): δ 5.81 (m, 2H, NCH₂CH=CH₂), 5.28 (d, ³J_{HH} = 10.5 Hz, 2H,

15 NCH₂CH=CH₂), 5.25 (d, ${}^{3}J_{HH}$ = 17 Hz, 2H, NCH₂CH=CH₂), 3.92 (d, ${}^{3}J_{HH}$ = 5.5 Hz ,4H, NCH₂CH=CH₂), 3.68 (s, 3H, CH₃SO₄), 3.35 (q, ${}^{3}J_{HH}$ = 7 Hz, 8H, NCH₂CH₃), 1.23 (t, ${}^{3}J_{HH}$ = 7 Hz,12H, NCH₂CH₃). ${}^{13}C{}^{1}H$ NMR (CDCl₃, 126 MHz): δ 131.34 (NCH₂CHCH₂), 118.60 (NCH₂CHCH₂), 116.48 (ring C), 116.15 (ring C), 54.34 (NCH₂CHCH₂), 54.04 (MeSO₄), 46.95 (NCH₂CH₃), 13.97 (NCH₂CH₃)₂. ES-MS⁺: m/z 276.245 (M⁺, 100%).

20 (14) Bis(diethylamino)diallylaminocyclopropenium bis(trifluoromethanesulfonyl)amide, [C₃(NEt₂)₂(N(CH₂CHCH₂)₂)]NTf₂

 $[C_3(NEt_2)_2(N(CH_2CHCH_2)_2)]MeSO_4$ (7.44 g, 19.2 mmol) was stirred with LiNTf₂ (3 equivalents) in H₂O (100 mL). The product was extracted with chloroform (100 mL), washed with H₂O (3 x 100 mL) and dried *in vacuo* to yield an orange liquid (7.0 g, 84%). ¹H, ¹³C NMR and MS⁺ as for

25 $[C_3(NEt_2)_2(N(CH_2CHCH_2)_2)]MeSO_4$ with an alternative peak in the ¹³C NMR due to NTf_2^- replacing $MeSO_4^-$.

$(15) \quad Bis(diethylamino) diethanolaminocyclopropenium iodide, [C_3(NEt_2)_2(N(CH_2CH_2OH)_2)] I \\ (15) \quad D_2(N(CH_2CH_2OH)_2) \\ (15) \quad D_2(N(CH_2OH)_2) \\ (15) \quad D_2(N(CH_2O$

Cyclopropenone $(Et_2N)_2C_3O$ (7.68 g, 39.2 mmol) was dried using ethanol azetropes (5 x 50 mL). Iodoethane (97.5 g, 625 mmol) was added and the solution was heated to reflux for 18 h. It was then cooled

30 to ambient temperature and $HN(C_2H_4OH)_2$ (8.44 g, 80.3 mmol) was added and stirred at ambient temperature 48 h. Excess iodoethane was removed *in vacuo* and H₂O (100 mL) added. Cyclopropenone

- 5 -

- 6 -

was extracted with dichloromethane (100 mL and 50 mL) and the combined extracts were washed with H₂O (2 x 100 mL). The H₂O washings were combined with the main product H₂O layer and were then extracted with dichloromethane (3 x 100 mL) to yield a yellow liquid (3.50 g, 21.7%). ¹H NMR (300 MHz, D₂O): δ 3.73 (t, ³*J*_{HH} = 5.3 Hz, 4H, NCH₂CH₂OH), 3.47 (t, ³*J*_{HH} = 5.3 Hz, 4H, NCH₂CH₂OH), 3.37 (q, ³*J*_{HH} = 7.1

5 Hz, 8H, NCH₂CH₃), 1.17 (t, ${}^{3}J_{HH} = 7.1$ Hz, 12H, NCH₂CH₃). 13 C NMR (75 MHz, D₂O, methanol added as reference): δ 117.89 (C₁), 117.26 (C₂), 59.46 (NCH₂CH₂OH), 54.38 (NCH₂CH₂OH), 47.20 (NCH₂CH₃), 13.98 (NCH₂CH₃). MS⁺ as for [C₃(NEt₂)₂(N(CH₂CH₂OH)₂)]MeSO₄.

$(16) Bis(diethylamino) diethanolaminocyclopropenium bis(trifluoromethanesulfonyl) amide, \\ [C_3(NEt_2)_2(N(CH_2CH_2OH)_2)]NTf_2$

[C₃(NEt₂)₂(N(CH₂CH₂OH)₂)]I (3.50 g, 8.52 mmol) was stirred with LiNTf₂ (5.0 g, 17 mmol) in H₂O (150 mL). The product was extracted with chloroform (150 mL), washed with H₂O (4 x 150 mL) and dried *in vacuo* to yield a yellow liquid (3.5 g, 73%). ¹H and ¹³C NMR as for [C₃(NEt₂)₂(N(CH₂CH₂OH)₂)]I with an additional peak at 119.8 in the ¹³C NMR spectrum due to NTf₂⁻. MS⁺ as for [C₃(NEt₂)₂(N(CH₂CH₂OH)₂)]MeSO₄.

15 (17) Bis(diethylamino)diethanolaminocyclopropenium dicyanoamide, [C₃(NEt₂)₂(N(CH₂CH₂OH)₂)]DCA

To $[C_3(NEt_2)_2(N(CH_2CH_2OH)_2)]MeSO_4$ (6.10 g, 16 mmol, prepared from $C_3(NEt_2)O$, Me_2SO_4 and $HN(CH_2CH_2OH)_2$ as described above) in water (50 mL) was added with NaDCA (4.2 g, 48 mmol) in water (50 mL). The product was extracted with CH_2Cl_2 (3 x 50 mL) and the solvent removed in vacuo. This material was then dissolved in water (50 mL) with a further 4.2 g of NaDCA and the product again extracted with CH_2Cl_2 (3 x 50 mL). Removal of solvent yielded a brown oil (4.70 g) of crude product. This was dissolved in water (100 mL), washed with diethyl ether (4 x 50 mL), and extracted with chloroform (4 x 50 mL). The sample was then put on a silica column and washed with CH_2Cl_2 and ethanol, the product was extracted with water. The solvent was then removed to give a yellow solid. This was then then extracted

25 with CH₂Cl₂. Recrystallisation from CH₂Cl₂/diethyl ether yielded a white solid (150 mg, 2.7%). Clearly, this synthesis and pourification procedure could be optimied further. ¹H and ¹³C NMR as for [C₃(NEt₂)₂(N(CH₂CH₂OH)₂)]I.

$(18) Bis(diethylamino) butylmethylaminocyclopropenium methylsulfate, \\ [C_3(NEt_2)_2(NBuMe)] MeSO_4$

Cyclopropenone (Et₂N)₂C₃O (6.41 g, 32.7 mmol), Me₂SO₄ (8.26 g, 65.5 mmol) and HNBuMe (7.14 g, 81.9 mmol) were reacted as described in the general synthetic procedure and gave an orange liquid (9.70 g, 78.6%).

10

- 7 -

Using an alternative route, to a stirred solution of $[C_3(NEt_2)_2(NHBu]MeSO_4 (1.0 \text{ g}, 2.8 \text{ mmol})$ in dry THF at -78 °C in an inert atmosphere was slowly added *n*-BuLi (1.89 mL, 3.03 mmol). The reaction was then stirred for 6 h and brought to room temperature. Me₂SO₄ (0.33 mL, 2.76 mmol) was added to this solution and stirred for 1 h. The solvent was removed *in vacuo*, the oil was washed with dry diethyl ether several times, the product was then dissolved in chloroform and filtered to remove LiMeSO₄. Removal of solvent *in vacuo* gave an orange oil (0.90 g, 87%).

¹H NMR (300 MHz, CDCl₃): δ 3.66 (s, 3H, MeSO₄), 3.39 (q, ³*J*_{HH} = 7.3 Hz, 8H, NC*H*₂CH₃), 3.30 (t, ³*J*_{HH} = 7.9 Hz, 2H, NC*H*₂CH₂), 3.13 (s, 3H, NC*H*₃), 1.59 (m, 2H, NCH₂C*H*₂), 1.19–38 (m, 14H, NCH₂CH₂C*H*₂) and NCH₂C*H*₃), 0.92 (t, ³*J*_{HH} = 7.3 Hz, 3H, CH₂C*H*₃). ¹³C NMR (126 MHz, CDCl₃): δ 117.20 (C₁), 116.14 (C₂), 55.16 (NCH₂CH₂), 54.04 (CH₃SO₄), 47.18 (NCH₂CH₃), 39.53 (NCH₃), 30.01 (NCH₂CH₂), 19.72 (NCH₂CH₂C*H*₂), 14.14 (NCH₂CH₃), 13.68 (CH₂CH₂CH₃).

(19) Bis(diethylamino)butylmethylaminocyclopropenium bis(trifluoromethanesulfonyl)amide, [C₃(NEt₂)₂(NBuMe)]NTf₂

[C₃(NEt₂)₂(NBuMe)]MeSO₄ (3.90 g, 10.3 mmol) was stirred with LiNTf₂ (10 g, 34.8 mmol) in H₂O (100 mL). The product was extracted with chloroform (150 mL), washed with H₂O (3 x 100 mL) and dried *in vacuo* to yield an orange liquid (4.48 g, 79.3%). ¹H and ¹³C NMR as for [C₃(NEt₂)₂(NBuMe)]MeSO₄ with an alternative peak in the ¹³C NMR due to NTf₂⁻ replacing MeSO₄⁻.

(20) Bis(diethylamino)butylmethylaminocyclopropenium dicyanoamide, [C₃(NEt₂)₂(NBuMe)]DCA

[C₃(NEt₂)₂(NBuMe)]MeSO₄ (5.50 g, 14.6 mmol) was stirred with NaDCA (4.00 g, 44.9 mmol) in H₂O
(100 mL). The product was extracted with chloroform (100 mL), washed with H₂O (3 x 100 mL) and dried *in vacuo* to yield an orange liquid (4.10 g, 84.6%). ¹H and ¹³C NMR as for [C₃(NEt₂)₂(NBuMe)]MeSO₄ with an alternative peak in the ¹³C NMR due to DCA replacing MeSO₄.

$(21) Bis(diethylamino) hexylmethylaminocyclopropenium methylsulfate, \\ [C_3(NEt_2)_2(NHexMe)] MeSO_4$

- 25 Cyclopropenone (Et₂N)₂C₃O (4.77 g, 24.3 mmol) and dimethylsulfate (3.68 g, 29.1 mmol) were mixed at ambient temperature for 30 min. Hexylmethylamine (3.45 g, 29.9 mmol) was added and the solution stirred at ambient temperature for 30 min. The product was washed with pentane (3 x 75 mL), to remove excess hexylmethylamine, and then with diethylether (3 x 75 mL), to remove residual bis(diethylamino)cyclopropenone. The product was then dissolved in CHCl₃ (100 mL) and washed with
- 30 H₂O (3 x 100 mL). CHCl₃ was removed *in vacuo* to give an orange liquid (7.70 g, 78.2%). ¹H NMR (300 MHz, CDCl₃): δ 3.67 (s, 3H, MeSO₄), 3.40 (q, ³J_{HH} = 7.2 Hz, NCH₂CH₃), 3.30 (t, ³J_{HH} = 7.8 Hz,

NCH₂(CH₂)₄CH₃), 3.14 (s, NCH₃), 1.55–69 (m, NCH₂CH₂(CH₂)₃CH₃), 1.19–36 (m, NCH₂CH₃ and N(CH₂)₂(CH₂)₃CH₃), 0.85 (t, ${}^{3}J_{HH} = 6.9$ Hz, NCH₂(CH₂)₄CH₃). 13 C NMR (75 MHz, CDCl₃): δ 117.36 (C₁), 116.40 (C₂), 55.73 (NCH₂C₅H₁₁), 54.04 (MeSO₄), 47.39 (NCH₂CH₃), 39.66 (NCH₃), 31.63 (NCH₂CH₂C₄H₉), 28.21 (N(C₂H₄)CH₂C₃H₇), 26.45 (NC₃H₆CH₂C₂H₅), 22.72 (NC₄H₈CH₂CH₃), 14.25

5 (NCH₂CH₃), 14.16 (NC₅H₁₀CH₃).

(22) Bis(diethylamino)hexylmethylaminocyclopropenium bis(trifluoromethanesulfonyl)amide, [C₃(NEt₂)₂(NHexMe)]NTf₂

 $[C_3(NEt_2)_2(NHexMe)]MeSO_4$ (3.10 g, 7.65 mmol) was stirred with LiNTf₂ (7.20 g, 25.08 mmol) in H₂O (150 mL). The product was extracted with chloroform (150 mL), washed with H₂O (3 x 150 mL) and dried *in vacuo* to yield a yellow liquid (3.60 g, 82.0%). Water content: 173.1 ppm. ¹H and ¹³C NMR as for

10 *in vacuo* to yield a yellow liquid (3.60 g, 82.0%). Water content: 173.1 ppm. ¹H and ¹³C NMR as for $[C_3(NEt_2)_2(NHexMe)]MeSO_4$ with an alternative peak in the ¹³C NMR at 119.85 (q, ¹ J_{CF} = 321.6 Hz, CF₃), due to NTf₂⁻ replacing MeSO₄⁻.

$(23) Bis(diethylamino) hexylmethylaminocyclopropenium dicyanoamide, \\ [C_3(NEt_2)_2(NHexMe)] DCA$

15 [C₃(NEt₂)₂(NHexMe)]MeSO₄ (4.60 g, 11.4 mmol) was stirred with NaDCA (3.40 g, 38.2 mmol) in H₂O (150 mL). The product was extracted with chloroform (150 mL), washed with H₂O (3 x 150 mL) and dried *in vacuo* to yield a yellow liquid (3.75 g, 91.6%). ¹H and ¹³C NMR as for [C₃(NEt₂)₂(NHexMe)]MeSO₄ with an alternative peak in the ¹³C NMR due to DCA replacing MeSO₄.

$(24) Bis (diethylamino) butylaminocyclopropenium methylsulfate, [C_3 (NEt_2)_2 (NHBu)] MeSO_4$

- Cyclopropenone (Et₂N)₂C₃O (9.00 g, 45.9 mmol), Me₂SO₄ (8.70 g, 69.0 mmol) and H₂NⁿBu (4.37 g, 59.7 mmol) were reacted as described in the general synthetic procedure and gave an orange liquid (10.46 g, 62.7%). Before H₂NBu was added, the product was washed with dry diethyl ether (5 x 20 mL) to remove unreacted Me₂SO₄. ¹H NMR (500 MHz, CDCl₃): δ 8.14 (br, 1H, NH), 3.67 (s, 3H, CH₃SO₄), 3.35 (q, ³J_{HH} = 7.16 Hz, 2H, NCH₂CH₃), 3.20 (t, ³J_{HH} = 6.83 Hz, 2H, NCH₂CH₂), 1.61 (m, 2H, NCH₂CH₂), 1.33 (m, 2H, NCH₂CH₂), 1.21 (t, ³J_{HH} = 7.25 Hz, 3H, NCH₂CH₃), 0.87 (t, ³J_{HH} = 7.25 Hz, 3H,
- CH₂CH₂CH₃). ¹³C NMR (126 MHz, CDCl₃): δ 115.94 (equivalent C₃ atoms), 114.65 (br, unique C₃ atom), 53.92 (CH₃SO₄), 46.79 (NCH₂CH₂), 46.27 (NCH₂CH₃), 32.044 (NCH₂CH₂), 19.46 (NCH₂CH₂CH₂), 13.95 (NCH₂CH₃), 13.34 (CH₂CH₂CH₃).

- 8 -

$(25) Bis(diethylamino) butylaminocyclopropenium bis(trifluoromethanesulfonyl) amide, \\ [C_3(NEt_2)_2(NHBu)] NTf_2$

 $[C_3(NEt_2)_2(NHBu)]MeSO_4$ (3.40 g, 9.37 mmol) was stirred with LiNTf₂ (8.10 g, 28.2 mmol) in H₂O (150 mL). The product was extracted with chloroform (150 mL), washed with H₂O (2 x 100 mL) and dried *in*

-9-

5 *vacuo* to yield an orange liquid (3.67 g, 73.7%). ¹H and ¹³C NMR similar to $[C_3(NEt_2)_2(NHBu)]MeSO_4$ with some differences: ¹H NMR NH resonance at 6.22 ppm. ¹³C NMR resonance for NTf₂⁻ at 119.79 ppm (q, ¹*J*_{CF} = 322 Hz, CF₃), C₃ ring resonances at 115.40 (equivalent C₃ atoms) and 115.37 (unique C₃ atom) ppm.

(26) Bis(diethylamino)butylaminocyclopropenium dicyanoamide, [C₃(NEt₂)₂(NHBu)]DCA

10 [C₃(NEt₂)₂(NHBu)]MeSO₄ (5.92 g, 16.3 mmol) was stirred with NaDCA (4.37 g, 49.1 mmol) in H₂O (150 mL). The product was extracted with chloroform (2 x 100 mL), washed with H₂O (4 x 100 mL) and dried *in vacuo* to yield an orange liquid (3.36 g, 64.8%). ¹H and ¹³C NMR similar to [C₃(NEt₂)₂(NHBu)]MeSO₄ with some differences: ¹H NMR resonance for NH at 7.92 ppm. ¹³C NMR resonance for DCA at 119.39 ppm, C₃ ring resonances at 115.54 (equivalent C₃ atoms) and 114.81 (slightly br, unique C₃ atom) ppm.

15 (27) Bis(diethylamino)butylaminocyclopropenium tetrafluoroborate, [C₃(NEt₂)₂(NHBu)]BF₄

Dried bis(diethylamino)cyclopropenone (1.03 g, 5 mmol) was stirred with [Me₃O]BF₄ (1.01 mL, 6.5 mmol) for 4 h in an inert atmosphere to give $[C_3(NEt_2)_2(OMe)]BF_4$ as a yellow oil (1.3 g, 83%). Butylamine (0.56 mL, 5.67 mmol) was then added and the mixture was stirred for 2 h. The product was washed several times with diethyl ether to remove unreacted amine. This yielded a yellow oil (1.2 g, 82%). ¹H and ¹³C NMR spectra as for [C₃(NEt₂)₂(NHBu)]MeSO₄ but with NH peak at 6.81 ppm and no peaks due to MeSO₄.

(28) Bis(diethylamino)hexylaminocyclopropenium methylsulfate, [C₃(NEt₂)₂(NHHex)]MeSO₄

Dried cyclopropenone $(Et_2N)_2C_3O$ (4.61 g, 23.5 mmol) and dimethylsulfate (5.93 g, 47.0 mmol) were mixed at ambient temperature for 1 h. Hexylamine (15.32 g, 151 mmol) was added and the solution was stirred at ambient temperature for 3 h. The product was washed with a diethyl ether/petroleum ether mixture

- 25 (3 x 75 mL, 1:1 ratio). The product was then dissolved in H₂O (50 mL), acidified with aqueous HCl, extracted with CH₂Cl₂ (50 mL) and washed with H₂O (3 x 75 mL). CH₂Cl₂ was removed *in vacuo*, and the product was then washed with diethyl ether (4 x 50 mL). Aqueous NaOH (200 mL, 0.38 mol/L) was added, and the product was washed with pet ether (4 x 100 mL) and diethyl ether (3 x 100 mL). The product was acidified with aqueous HCl and H₂O removed *in vacuo*. Addition of acetone caused precipitation of NaCl,
- 30

20

which was filtered off. Removal of acetone *in vacuo* yielded a yellow liquid (2.64 g, 33.9%). ¹H NMR (500 MHz, CDCl₃): δ 9.04 (br. s, 1H, NH), 3.69 (s, (CH₃)SO₄), 3.39 (br. q, ³J_{HH} = 7.0 Hz, NCH₂CH₃), 3.19

 $-10 - (q, {}^{3}J_{HH} = 7.0 \text{ Hz}, \text{NCH}_{2}(\text{CH}_{2})_{4}\text{CH}_{3}), 1.65 \text{ (m, NCH}_{2}\text{CH}_{2}(\text{CH}_{2})_{3}\text{CH}_{3}), 1.18-35 \text{ (m, NCH}_{2}\text{CH}_{3} \text{ and} \text{N}(\text{CH}_{2})_{2}(\text{CH}_{2})_{3}\text{CH}_{3}), 0.82 \text{ (t, }^{3}J_{HH} = 6.8 \text{ Hz}, \text{NCH}_{2}(\text{CH}_{2})_{4}\text{CH}_{3}). {}^{13}\text{C} \text{ NMR} (125 \text{ MHz}, \text{CDCl}_{3}): 116.93 \text{ (C}_{1} \text{ and } \text{C}_{2}), 54.61 \text{ (CH}_{3}\text{SO}_{4}), 47.64 \text{ (NCH}_{2}\text{C}_{5}\text{H}_{11}), 46.82 \text{ (NCH}_{2}\text{CH}_{3}), 31.65 \text{ (NCH}_{2}\text{C}_{2}\text{C}_{4}\text{H}_{9}), 30.67 \text{ (N(C}_{2}\text{H}_{4})\text{CH}_{2}\text{C}_{3}\text{H}_{7}), 26.69 \text{ (NC}_{3}\text{H}_{6}\text{CH}_{2}\text{C}_{2}\text{H}_{5}), 22.74 \text{ (NC}_{4}\text{H}_{8}\text{CH}_{2}\text{CH}_{3}), 14.53 \text{ (NCH}_{2}\text{CH}_{3}),$

5 14.123(NC₅H₁₀CH₃). MS⁺ as for $[C_3(NEt_2)_2(NHHex)]$ TFSA.

$(29) Bis(diethylamino)hexylaminocyclopropenium bis(trifluoromethanesulfonyl)amide, \\ [C_3(NEt_2)_2(NHHex)]NTf_2$

 $[C_3(NEt_2)_2(NHHex)]MeSO_4$ (2.64 g, 7.97 mmol) was stirred with LiNTf₂ (6.9 g, 24.1 mmol) in H₂O (200 mL) for 30 min. The product was extracted with diethyl ether (200 mL). Additional LiNTf₂ (6.3 g, 22.0

10 mmol) and H₂O (200 mL) were added and the mixture stirred for 1.5 h. The organic layer was washed with H₂O (4 x 75 mL) and dried *in vacuo* to yield a yellow liquid (3.50 g, 78.4%). ¹H and ¹³C NMR as for $[C_3(NEt_2)_2(NHHex)]MeSO_4$ with additional peaks in the ¹³C NMR due to NTf_2^- and no peaks due to $MeSO_4^-$. ES-MS⁺: m/z 280.3 (100%, M⁺).

(30) Bis(diethylamino)aminocyclopropenium methylsulfate, [C₃(NEt₂)₂(NH₂)]MeSO₄

- 15 NH_{3(g)} (excess) was passed through a rapidly stirred sample of $[C_3(NEt_2)_2(OMe)]MeSO_4$ (3 g, 9 mmol) for 2 h in an inert atmosphere. Excess NH₃ was removed *in vacuo* to give an orange viscous oil (2.86 g, 100%). ¹H NMR (500 MHz, D₂O): δ 3.60 (s, 3H, CH₃SO₄), 3.24 (q, ³J_{HH} = 7.3 Hz, 8H, NCH₂CH₃), 1.08 (t, ³J_{HH} = 7.3 Hz, 12H, NCH₂CH₃). ¹H NMR (500 MHz, CDCl₃): δ 7.18 (s, 2H, NH), 3.77 (s, 3H, CH₃SO₄), 3.39 (q, ³J_{HH} = 7 Hz, 8H, NCH₂CH₃), 1.23 (t, ³J_{HH} = 7 Hz, 12H, NCH₂CH₃). ¹³C NMR (126
- 20 MHz, D₂O) δ 116.57 (equivalent ring C), 113.97 (unique ring C), 55.55 (CH₃SO₄), 46.42 (NCH₂CH₃),
 13.80 (NCH₂CH₃). EI-MS: m/z 196.18 (M⁺).

$(31) \quad Bis(diethylamino) a minocyclopropenium bis(trifluoromethanesulfonyl) a mide, \\ [C_3(NEt_2)_2(NH_2)]NTf_2$

 $[C_{3}(NEt_{2})_{2}(NH_{2})]MeSO_{4} (2.35 \text{ g}, 8 \text{ mmol}) \text{ was stirred with LiNTf}_{2} (6.58 \text{ g}, 24 \text{ mmol}) \text{ in water (10 mL) for}$ 30 min. The product was extracted with chloroform (3 x 10 mL) to give a yellow oil (2.83 g, 78%). ¹H NMR (500 MHz, CDCl₃): δ 5.83 (s, 2H, N*H*), 3.36 (q, ³J_{HH} = 7 Hz, 8H, NCH₂CH₃), 1.25 (t, ³J_{HH} = 7 Hz, 12H, NCH₂CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 120.74 (q, ¹J_{CF} = 299 Hz, CF₃), 116.23 (equivalent ring C), 114.18 (unique ring C), 46.80 (NCH₂CH₃), 14.40 (NCH₂CH₃). EI-MS: m/z 196.18 (M⁺).

$(32) Tris(diallylamino) cyclopropenium chloride, [C_3(N(CH_2CHCH_2)_2)_3]Cl$

30 C_3Cl_5H (6.67 g, 31.1 mmol) and HN(CH₂CHCH₂)₂ (23.6 g, 243 mmol) gave a yellow liquid (9.95 g, 88.9% yield) after separation from diallylammonium chloride by extraction of an aqueous solution with

- 11 -

chloroform. ¹H NMR (500 MHz, CDCl₃): δ 5.58 (m, 6H, NCH₂CHCH₂), 5.04 (m, 12H, NCH₂CHCH₂), 3.76 (d, ³*J*_{HH} = 5.14 Hz, 13H, NCH₂CHCH₂). ¹³C NMR (126 MHz, CDCl₃): δ 130.81 (NCH₂CHCH₂), 118.39 (NCH₂CHCH₂), 116.36 (C₃), 54.03 (NCH₂CHCH₂). ES-MS⁺: m/z 324 (100%, M⁺).

(33) Tris(diallylamino)cyclopropenium bis(trifluoromethanesulfonyl)amide,

5 $[C_3(N(CH_2CHCH_2)_2)_3]NTf_2$

 $[C_3(N(CH_2CHCH_2)_2)_3]Cl$ from above (4.11 g, 11.4 mmol) was stirred with LiNTf₂ (7.00 g, 24.4 mmol) in H₂O (100 mL). The product was extracted with chloroform (2 x 100 mL), washed with H₂O (3 x 100 mL), and then dried *in vacuo* to yield a light yellow liquid (5.00 g, 72.4%). ¹H, ¹³C NMR and MS⁺ as for $[C_3(N(CH_2CHCH_2)_2)_3]Cl$ with an additional peak in the ¹³C NMR due to NTf₂⁻.

10 (34) Tris(diallylamino)cyclopropenium dicyanoamide, [C₃(N(CH₂CHCH₂)₂)₃]DCA

 $[C_3(N(CH_2CHCH_2)_2)_3]Cl$ from above (5.19 g, 14.4 mmol) was stirred with NaDCA (2.84 g, 31.9 mmol) in H₂O (100 mL). The product was extracted with chloroform (2 x 100 mL), washed with H₂O (3 x 100 mL), and then dried *in vacuo* to yield a light yellow liquid (5.06 g, 89.9%). ¹H, ¹³C NMR and MS⁺ as for $[C_3(N(CH_2CHCH_2)_2)_3]Cl$ with an additional peak in the ¹³C NMR due to DCA.

15 (35) Bis(diethylamino)-S-(1-carboxylethylamino)cyclopropenium methylsulfate, [C₃(NEt₂)₂(NH((S)-CHMeCOOH))]MeSO₄

Dried bis(diethylamino)cyclopropenone (21.13 g, 108 mmol) was stirred with Me₂SO₄ (13.3 mL, 140 mmol) for 30 minutes in an inert atmosphere. The mixture was washed with dry diethyl ether several times to remove excess Me₂SO₄ and cyclopropenone. This gave [C₃(NEt₂)(OMe)]MeSO₄ as an orange viscous oil (24.2 g, 70%).

 $[C_3(NEt_2)_2(OMe)]MeSO_4$ (11.37 g, 35.31 mmol) was stirred with L-alanine (4.1 g, 46 mmol) and NEt₃ (17 mL, 106 mmol) in water (20 mL) overnight. Water was removed *in vacuo* and the product was dissolved in acetone (20 mL) and filtered to remove unreacted L-alanine. The solvent was removed in vacuo and NEt₃ was removed by washing with dry diethylether (5 x 50 mL) to give an orange oil (10.4 g, 75.7%). ¹H NMR

25 (500MHz, CDCl₃): δ 8.36 (d, ³*J*_{HH} = 7 Hz, 1H, NH), 5.65 (br, 1H, COOH), 4.01 (dq, ³*J*_{HH} = 7 Hz, ³*J*_{HH} = 7 Hz, 1H, CH), 3.71 (s, 3H, MeSO₄), 3.38 (q, ³*J*_{HH} = 6.6 Hz, 8H, NC*H*₂CH₃), 1.58 (d, ³*J*_{HH} = 7 Hz, 3H, Me), 1.24 (t, ³*J*_{HH} = 6.6 Hz, 12H, NCH₂CH₃). ¹³C NMR (CDCl₃, 126 MHz) δ 175.37 (COOH), 115.75 (unique ring C), 115.18 (equivalent ring C), 56.54 (CHMe), 54.74 (MeSO₄), 46.54 (NCH₂CH₃), 18.34 (CHCH₃), 14.22 (NCH₂CH₃). EI-MS: m/z 268.93 (M⁺). [α]₂₅^D -29.1° (c 1.9, 1 M HCl(aq)), -9.5° (c 4.1, 1 M

30 NaOH(aq)).

20

- 12 -Bis(diethylamino)-S-(1-carboxylethylamino)cyclopropenium (36) bis(trifluoromethanesulfonyl)amide, [C₃(NEt₂)₂(NH((S)-CHMeCOOH))]NTf₂

[C₃(NEt₂)₂(NH((S)-CHMeCOOH))]MeSO₄ (2.1 g, 5 mmol) was stirred with LiNTf₂ (4.71 g, 16 mmol) in 10 mL of water. Extraction with chloroform (3 x 10 mL) yielded the product (2.57 g, 86%). ¹H and ¹³C NMR spectra similar to $[C_3(NEt_2)_2(NH((S)-CHMeCOOH))]MeSO_4$ with no peaks due to $MeSO_4^-$ and additional peaks in the ¹³C NMR due to NTf_2^- . ES-MS⁺ as for $[C_3(NEt_2)_2(NH((S)-$

```
CHMeCOOH))]MeSO<sub>4</sub>.
```

5

25

(37) Bis(diethylamino)-S-(2-carboxypyrrolidino)cyclopropenium methylsulfate, [C₃(NEt₂)₂(N(C₄H₇COOH))]MeSO₄

- $[C_3(NEt_2)_2(OMe)]MeSO_4$ (5.65 g, 18 mmol) was stirred with L-proline (2.62 g, 23 mmol) and NEt₃ (3.64 10 mL, 23 mmol) in water (20 mL) overnight. Water was removed in vacuo and the product was dissolved in acetone (20 mL) and filtered to remove unreacted L-proline. The mixture was dissolved in ice cold water and the product was extracted with chloroform:ethanol (2:1) (3 x 30 mL). The solvent was removed in *vacuo* to give an orange oil (5.53 g, 78%). ¹H NMR (400 MHz, CDCl₃): δ 7.37 (br, 1H, COOH), 4.42 (dd,
- ${}^{3}J_{HH} = 3.6Hz$, ${}^{3}J_{HH} = 8Hz$, 1H, CH), 3.72 (m, 1H, NCH₂), 3.68 (s, 3H, CH₃SO₄), 3.60 (ddd, ${}^{3}J_{HH} = 7.9Hz$, 15 1H, NCH₂), 3.34 (m, 8H, NCH₂CH₃), 2.31 (m, 2H, NCH₂CH₂CH₂), 2.01 (m, 2H, NCH₂CH₂), 1.21 (t, ³J_{HH} = 6.6 Hz, 12H, NCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 174.09 (COOH), 116.08 (equivalent ring C), 114.80 (unique ring C), 64.60 (NCH), 54.26 (CH₃SO₄), 51.89 (NCH₂), 46.77 (NCH₂CH₃), 31.13 (NCHCH₂), 24.32 (NCH₂CH₂CH₂), 13.94 (NCH₂CH₃). EI-MS: m/z 295.00 (M⁺). $[\alpha]_{25}^{D}$ -58.3° (c 7.8, 1 M HCl(aq)), -
- 20 84.8° (c 1.5, 1 M NaOH(aq)).

(38) Bis(diethylamino)-S-(2-carboxypyrrolidino)cyclopropenium bis(trifluoromethanesulfonyl)amide, [C₃(NEt₂)₂(N(C₄H₇COOH))]NTf₂

[C₃(NEt₂)₂(N(C₄H₇COOH))]MeSO₄ (2.1 g, 5 mmol) was stirred with LiNTf₂ (4.71 g, 16 mmol) in 10 mL of water. Extraction with chloroform (3 x 10 mL) yielded the product (2.57 g, 86%). ¹H and ¹³C NMR similar to $[C_3(NEt_2)_2(N(C_4H_7COOH))]MeSO_4$ but with no peaks due to $MeSO_4^-$ and additional peaks in the ¹³C NMR due to NTf_2^- . ES-MS⁺ as for $[C_3(NEt_2)_2(N(C_4H_7COOH))]MeSO_4$.

Bis(diethylamino)-S-(1-carboxy-2-methylpropylamino)cyclopropenium methylsulfate, (39) $[C_3(NEt_2)_2(NH(C_4H_8COOH))]MeSO_4$

 $[C_3(NEt_2)_2(OMe)]MeSO_4$ (15 g, 47 mmol) was stirred with L-valine (7.09 g, 61 mmol) and NEt₃ (9.67 mL, 61 mmol) in water (50 mL) overnight. Water was removed in vacuo and the product was dissolved in 30 acetone (20 mL) and filtered to remove unreacted L-valine. The mixture was dissolved in ice cold water and - 13 -

the product was extracted with chloroform:ethanol (2:1) (3 x 30 mL). The solvent was removed *in vacuo* to give a yellow solid 10.00 g, 55%). ¹H NMR (400MHz, CDCl₃): δ 8.44 (br, 1H, NH), 3.67 (s, 3H, CH₃SO₄), 3.62 (d, ³J_{HH} = 6.4Hz, 1H, CH), 3.38 (m, 8H, NCH₂CH₃), 2.23 (m, 1H, CH), 1.22 (t, ³J_{HH} = 7.2 Hz, 12H, NCH₂CH₃), 1.03 (d, ³J_{HH} = 6.8 Hz, 3H, CH₃), 0.98 (d, ³J_{HH} = 6.8 Hz, 3H, CH₃). ¹³C NMR (100 MHz,

5 CDCl₃) δ 174.25 (COOH), 115.87 (equivalent ring C), 115.46 (unique ring C), 68.82 (CHNH), 54.27 (CH₃SO₄), 46.62 (NCH₂CH₃), 31.00 (CH(CH₃)₂), 19.28 (CH₃), 18.80 (CH₃), 14.27 (NCH₂CH₃). EI-MS: m/z 296.233 (M⁺). [α]₂₅^D -3.2° (c 0.6, 1 M HCl(aq)), -1.7° (c 0.6, 1 M NaOH(aq)).

$(40) Bis(diethylamino)-S-(1-carboxy-2-methylpropylamino)cyclopropenium bis(trifluoromethanesulfonyl)amide, [C_3(NEt_2)_2(NH(C_4H_8COOH))]NTf_2$

10 $[C_3(NEt_2)_2(NH(C_4H_8COOH))]MeSO_4$ (2.1 g, 5 mmol) was stirred with LiNTf₂ (4.71 g, 16 mmol) in 10 mL of water. Extraction with chloroform (3 x 10 mL) yielded the product (2.57 g, 86%). ¹H and ¹³C NMR spectra similar to $[C_3(NEt_2)_2(NH(C_4H_8COOH))]MeSO_4$ but with no peaks due to $MeSO_4^-$ and additional peaks in the ¹³C NMR due to NTf_2^- . ES-MS⁺ as for $[C_3(NEt_2)_2(NH(C_4H_8COOH))]MeSO_4$.

(41) Bis(diethylamino)-S-(1-carboxy-2-hydroxylpropylamino)cyclopropenium methylsulfate, [C₃(NEt₂)₂(NH(C₃H₅OHCOOH))]MeSO₄

[C₃(NEt₂)₂(OMe)]MeSO₄ (10 g, 31 mmol) was stirred with L-threonine (4.8 g, 40 mmol) and NEt₃ (6.45 mL, 40 mmol) in water (50 mL) overnight. Water was removed *in vacuo* and the product was dissolved in acetone (20 mL) and filtered to remove unreacted L-threonine. The mixture was dissolved in ice cold water and the product was extracted with chloroform:ethanol (2:1) (3 x 30 mL). The solvent was removed *in vacuo* to give a yellow solid (9.30 g, 76%). ¹H NMR (500 MHz, CDCl₃): δ 8.04 (br, 1H, NH), 5.27 (br, 2H, OH+H₂O), 4.08 (m,1H, NCH), 3.69 (m, 1H, CHOH), 3.67 (s, 3H, CH₃SO₄), 3.37 (q, ³J_{HH} = 7.16 Hz, 8H, NCH₂CH₃), 1.23 (d, ³J_{HH} = 7.5 Hz, 3H, CH₃), 1.21 (t, ³J_{HH} = 7.25 Hz, 12H, NCH₂CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 173.37 (COOH), 115.98 (equivalent ring C), 115.35 (unique ring C), 67.78 (CHCH₃), 67.20 (CHNH), 54.31 (CH₃SO₄), 46.49 (NCH₂CH₃), 19.42 (CH₃), 14.20 (NCH₂CH₃). EI-MS: m/z 298.87 (M⁺). [α]₂₅^D -6.0° (c 3.0, 1 M HCl(aq)), -3.6° (c 4.1, 1 M NaOH(aq)).

25

30

20

$(42) Bis(diethylamino)-S-(1-carboxy-2-hydroxylpropylamino)) cyclopropenium bis(trifluoromethanesulfonyl) amide, [C_3(NEt_2)_2(NH(C_3H_5OHCOOH))]NTf_2$

 $[C_3(NEt_2)_2(NH(C_3H_6OCOOH))]MeSO_4$ (2.1 g, 5 mmol) was stirred with LiNTf₂ (4.71 g, 16 mmol) in 10 mL of water. Extraction with chloroform (3 x 10 mL) yielded the product (2.57 g, 86%). ¹H and ¹³C NMR spectra similar to $[C_3(NEt_2)_2(NH(C_3H_6OCOOH))]MeSO_4$ but with no peaks due to $MeSO_4^-$ and additional peaks in the ¹³C NMR due to NTf_2^- . MS⁺ as for $[C_3(NEt_2)_2(NH(C_3H_6OCOOH))]MeSO_4$.

- 14 -

Aldol reactions of benzaldehyde with acetone

The reaction mixtures were stirred at room temperature for 25 h and then filtered to recover L-proline. Acetone was removed in vacuo. The pure aldol addition product was obtained as a yellow oil after flash silica gel column chromatography, eluting with n-hexane/ EtOAc (2:1).

5

~

(27) $[C_3(NEt_2)_2(NHBu)]BF_4$

(29) [C₃(NEt₂)₂(NHHex)]NTf₂

Compound	20 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C	H ₂ O	Cl
(2) $[C_3(NEt_2)_2(NMe_2)]NTf_2$	83.6	52.4	35.2	24.7	17.9	13.4	10.3	8.15	141.7	62
(3) $[C_3(NEt_2)_2(NMe_2)]DCA$	58.4	37.1	25.4	17.9	13.2	10	7.94	6.41	1115	3554
(4) $[C_3(NEt_2)_3]DCA$	64.2	41.9	28.3	19.9	14.6	11.4	8.89	7.07	1040	960
(6) $[C_3(NEt_2)_2(NBu_2)]NTf_2$	126	76.4	49.9	32.7	23.1	17.2	13	9.91	56.9	83
(7) $[C_3(NEt_2)_2(NBu_2)]DCA$	105	63.3	40.8	27.4	19.4	14.2	11	8.56	623.9	263
(9) $[C_3(NEt_2)_2(NHex_2)]NTf_2$	182	108	67.8	44.2	30.2	21.7	15.8	12	76	_
(10) $[C_3(NEt_2)_2(NHex_2)]DCA$	131	76.8	48.4	32	22.2	16	12	9.25	894	519
(11) $[C_3(NEt_2)_2(NHex_2)]I$	_	_	547	238	123	75.1	36.4	24.9	1279	_
(12) $[C_3(NEt_2)_2(NHex_2)]OTf$	444	240	138	82.8	54.7	38.8	26.2	20.5	720	125
(14) $[C_3(NEt_2)_2(N(CH_2CHCH_2)_2)]NTf_2$	111	67.4	43.7	29.6	20.9	15.3	11.7	9.04	67	519
(16) $[C_3(NEt_2)_2(N(CH_2CH_2OH)_2)]NTf_2$	_	_	249	143	89.0	58.5	40.1	28.7		422
(19) $[C_3(NEt_2)_2(NBuMe)]NTf_2$	106	66.4	43.3	29.7	21.1	15.5	11.9	9.12	407	97
(20) $[C_3(NEt_2)_2(NBuMe)]DCA$	73.7	45.8	30.2	20.8	15.3	11.5	8.94	7.1	1040	202
(22) $[C_3(NEt_2)_2(NHexMe)]NTf_2$	102	62.8	41.4	28.3	20.3	15.2	11.6	9.07	82	103
(23) $[C_3(NEt_2)_2(NHexMe)]DCA$	86.2	52.8	34.4	23.4	17.0	12.7	9.78	7.71	604	619
(24) $[C_3(NEt_2)_2(NHBu)]MeSO_4$	344	188	106	67.4	45.0	31.7	22.7	16.8	365	1063
(25) $[C_3(NEt_2)_2(NHBu)]NTf_2$	176	96	54.5	36.5	25.5	18.4	13.8	10.8	72	1437
(26) $[C_3(NEt_2)_2(NHBu)]DCA$	251	126	75.6	47.0	31.6	23	17	12.9	492	2033

65.9

103

131

171

37.8

61.3

22.7

40.8

14.7

27.9

10.1

20.4

7.0

15.2

5.13

11.4

36

145

32

426

Table 1a. Viscosity (cP) and water (ppm) and chloride (ppm) content data.

- 15 -										
Compound	20 °C	30 °C	40 °C	50 °C	60 °C	70 °C	80 °C	90 °C	H ₂ O	Cl
(33) [C ₃ (N(CH ₂ CHCH ₂) ₂) ₃]NTf ₂	126	72.6	45.5	30.8	21.1	15.3	11.4	8.64	150	231
(34) [C ₃ (N(CH ₂ CHCH ₂) ₂) ₃]DCA	211	113	65.3	41.1	27.2	19.3	15.2	10.7	170	638

- 15 -

Compound	60 °C	65 °C	70 °C	75 °C	80 °C	85 °C	90 °C	H ₂ O	Cl
(35) (Ala) $[C_3(NEt_2)_2(NH((S)-CHMeCOOH))]MeSO_4$	_	1006	742	562	437	363	349	14400	2289
(36) (Ala) $[C_3(NEt_2)_2(NH((S)-CHMeCOOH))]NTf_2$	820	590	435	329	255	197	156	46	435
(37) (Pro) $[C_3(NEt_2)_2(N(C_4H_7COOH))]MeSO_4$	_	_	_	834	615	460	412	514	9706
(38) (Pro) [C ₃ (NEt ₂) ₂ (N(C ₄ H ₇ COOH))]NTf ₂	564	406	303	231	179	139		603	174
$(39) (Val) [C_3(NEt_2)_2(NH(C_4H_8COOH))]MeSO_4$	_	_	_	_	_	_	_	3070	41369
(40) (Val) $[C_3(NEt_2)_2(NH(C_4H_8COOH))]NTf_2$	_	-	-	-	_	_	_	188	186
(41) (Threo) $[C_3(NEt_2)_2(NH(C_3H_5OHCOOH))]MeSO_4$	_	_	_	_	_	_	_	2660	3229
(42) (Threo) $[C_3(NEt_2)_2(NH(C_3H_5OHCOOH))]NTf_2$	_	_	_	884	617	456	329	1152	38

Table 1b. Viscosity (cP) and water (ppm) and chloride (ppm) content data.

Table 2. Microanalytical data (Calc./Exptl).

Compound	С	Н	N	Cl	F	S
(2) $[C_3(NEt_2)_2(NMe_2)]NTf_2$	35.71	5.19	11.11			
	36.38	5.48	11.13			
(3) $[C_3(NEt_2)_2(NMe_2)]DCA.1H_2O$	58.41	9.15	27.25			
	58.91	8.90	26.66			
(4) [C ₃ (NEt ₂) ₃]DCA	64.12	9.49	26.39			
	63.99	9.77	26.59			
(6) $[C_3(NEt_2)_2(NBu_2)]NTf_2$	42.85	6.51	9.52		19.36	10.89
	42.95	6.72	9.60		19.42	10.79
(7) [C ₃ (NEt ₂) ₂ (NBu ₂)]DCA	67.34	10.23	22.44			
	64.93	9.68	21.85			
(9) $[C_3(NEt_2)_2(NHex_2)]NTf_2$	46.57	7.19	8.69		17.68	
	47.35	7.58	8.78		14.87	
(10)	67.33	10.78	18.84			
$[C_3(NEt_2)_2(NHex_2)]DCA.0.85H_2O$	67.43	10.62	18.71			

- 16 -

Compound	-]	н	N	Cl	F	S
	55.00	0.44	0.47		-	5
(11) $[C_3(NEt_2)_2(NHex_2)]I.0.25H_2O$	55.69 55.62	9.44 9.53	8.47 8.52			
	56.10	0.02	0.02			
(12) $[C_3(NEt_2)_2(NHex_2)][CF_3SO_3]$	55.95	9.03	8.18 7.96			
(14)	41.00	5.42	10.07			
$[C_3(\text{NEt}_2)_2(\text{N}(\text{CH}_2\text{CHCH}_2)_2)]\text{NTf}_2$	41.00	5.45 5.47	10.07			
(16)	26.17	5.26	0.02			
$[C_3(NEt_2)_2(N(CH_2CH_2OH)_2)]NTf_2$	36.45	5.30 5.24	9.92			
(17)	50.15	9.62	22.00			
(17) [C ₃ (NEt ₂) ₂ (N(CH ₂ CH ₂ OH) ₂)]DCA	58.26 58.19	8.63 8.84	23.98			
	30.17	5.04	10.05		2 0.0 7	
(19) $[C_3(NEt_2)_2(NBuMe)]NTt_2$	39.55	5.90	10.25		20.85	
	40.41	5.67	10.28		17.00	
(20) $[C_3(NEt_2)_2(NBuMe)]DCA.0.5H_2O$	63.31	9.74	24.61			
	03.08	9.80	24.78			
(22) $[C_3(NEt_2)_2(NHexMe)]NTf_2$	41.80	6.31	9.75		19.84	11.16
	42.78	6.35	9.75		17.29	10.07
(23) $[C_3(NEt_2)_2(NHexMe)]DCA$	66.63	10.06	23.31			
	64.61	9.95	21.89			
(24) $[C_3(NEt_2)_2(NHBu)]MeSO_4$	52.87	9.15	11.56			
	52.27	9.25	11.49			
(25) $[C_3(NEt_2)_2(NHBu)]NTf_2$	64.12	9.50	26.40			
	63.91	9.93	25.96			
(26) [C ₃ (NEt ₂) ₂ (NHBu)]DCA	64.12	9.50	25.96			
	63.91	9.93	25.96			
(27) [C ₃ (NEt ₂) ₂ (NHBu)]BF ₄ .0.25H ₂ O	52.31	9.23	12.22			
	52.41	8.94	12.22			
(29) [C ₃ (NEt ₂) ₂ (NHHex)]NTf ₂	40.71	6.11	9.99			
	41.43	6.26	10.07			
(30) $[C_3(NEt_2)_2(NH_2)]MeSO_4.1.5H_2O$	43.10	8.43	12.56			
	42.78	8.29	12.84			
(31) [C ₃ (NEt ₂) ₂ (NH ₂)]NTf ₂	34.51	4.87	11.86			
With 4% cyclopropenone	34.15	4.94	11.89			
(32)	67.22	8.51	11.20	9.45		
$[C_3(N(CH_2CHCH_2)_2)_3]Cl.0.9H_2O$	67.22	8.51	10.82	9.17		

- 17 -

- 18 -									
Compound	С	Н	Ν	Cl	F	S			
(33) [C ₂ (N(CH ₂ CHCH ₂) ₂) ₂]NTf ₂	45.68	5.00	9.27						
	45.95	5.22	9.56						
(34)	69.11	7.82	21.02						
$[C_3(N(CH_2CHCH_2)_2)_3]DCA.0.5H_2O$	69.11	7.71	21.06						
(35)	51.33	8.13	12.23						
$[C_3(NEt_2)_2(NH((S)-CHMeCOOH))]M$ eSO ₄ (25% zwitterion)	51.70	8.34	11.82						
(36) $[C_3(NEt_2)_2(NH(S)-$	36.15	4.96	10.43						
CHMeCOOH))]NTf ₂ (4% zwitterion)	36.14	5.31	10.40						
(37)									
$[C_3(NEt_2)_2(N(C_4H_7COOH))]MeSO_4$	54.47	8.38	11.52						
(38% zwitterion + 3% water)	54.57	8.89	11.59						
(38)									
$[C_3(NEt_2)_2(N(C_4H_7COOH))]NTf_2$	40.59	5.73	10.13						
(15% zwitterion + 3% water)	40.41	5.69	10.24						
(39)	57.01	9.05	12.15						
$[C_3(\text{NEt}_2)_2(\text{NH}(C_4\text{H}_8\text{COOH}))]\text{MeSO}_4$ (50% zwitterion, 1% water)	57.10	9.01	12.08						
(40)	41.40	6.27	10.27						
$[C_3(NEt_2)_2(NH(C_4H_8COOH))]NTf_2$	41.49	0.27	10.27						
(19% zwitterion, 3% water)	41.38	6.46	10.56						
(41) $(C (NEt) (NH(C + OCOOH)))Mas$	54.44	8.47	12.39						
O_4 (55% zwitterion)	54.43	8.46	12.38						
(42)	38.51	5.39	10.36						
[C ₃ (NEt ₂) ₂ (NH(C ₃ H ₆ OCOOH))]NTf ₂ (8% zwitterion)	38.57	5.51	10.52						