A Reagent based DOS strategy via Evans chiral auxiliary: Highly stereoselective Michael reaction towards optically active quinolizidinones, piperidinones and pyrrolidinones

Subhabrata Sen, $*^{a}$ Siva R. Kamma ${ }^{a, b}$, Rambabu Gundla ${ }^{a}$, Uma Adepally ${ }^{b}$, Santosh Kuncha ${ }^{b}$, Sridhar Thirnathi, ${ }^{a}$ and U. Viplava Prasad ${ }^{c}$

Experimental Section

General Methods. Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under a positive pressure of dry argon. Similarly sensitive liquids and solutions were transferred via syringe. Reactions were stirred using teflon-coated magnetic stir bars. Elevated temperatures were maintained using thermostat-controlled silicon oil baths. Organic solutions were concentrated using a rotary evaporator with a desktop vacuum pump. Tetrahydrofuran, diethyl ether, dioxane, benzene, and toluene were distilled from sodium and benzophenone prior to use. Dichloromethane was distilled from CaH_{2} prior to use. Analytical TLC was performed with 0.25 mm silica gel G plates with a 254 nm fluorescent indicator. The TLC plates were visualized by ultraviolet light and treatment with phosphomolybdic acid stain followed by gentle heating. Purification of products was accomplished by flash chromatography on silica gel and the purified compounds showed a single spot by analytical TLC. The diastereomeric ratio and the regioisomeric ratio were determined by ${ }^{1} \mathrm{H}$ NMR of crude reaction mixtures. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are reported as follows: chemical shift (ppm, referenced to TMS; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, ddd $=$ doublet of doublet of doublets, $m=$ multiplet), coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}$-NMR spectra are reported in terms of chemical shift (ppm) relative to residual solvent peak $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$.

General procedures for the $\mathbf{T i C l}_{4}$ catalyzed Michael reaction

To an oven dried three-necked flask was added imide 1, 10-14 (1.00 mmol) in anh.THF (5.0 mL) under argon. To the resulting solution was added sodium hexamethyldisilylazide (1M NaHMDS in THF, 1.00 mmol) at $-78^{\circ} \mathrm{C}$ and stirred at same temperature for 30 min . After which trimethylsilyl chloride (TMSCl) (1.5 eq.) was added and stirred at rt for 3-4 h. The above solution was cooled to $0^{\circ} \mathrm{C}$, then β-nitrostyrene (1.20 mmol) and titanium tetrachloride (TiCl_{4}) $(0.057 \mathrm{~g}, 0.3 \mathrm{mmol})$ were added to it. After stirring at that temperature for 4 h , the solution was poured into cooled water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 4)$. The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate $=80 / 20$) to afford pure product.
2. Imide $1(2 \mathrm{~g}, 6.4 \mathrm{mmol})$ in THF (30 mL), NaHMDS, (1 M in THF, $6.4 \mathrm{~mL}, 6.4 \mathrm{mmol}$) at -78 ${ }^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $0.5 \mathrm{~h}, \mathrm{TMSCl},(1.3 \mathrm{~mL}, 9.6 \mathrm{mmol})$ was added and stirred at rt for 4 h . Again cooled to $0^{\circ} \mathrm{C}$, nitrostyrene $(0.95 \mathrm{~g}, 6.4 \mathrm{mmol})$ and titanium tetrachloride $(0.364 \mathrm{~g}, 1.92$ mmol) were added to it. The final compound $\mathbf{2}$ was obtained as off-white solid ($2.1 \mathrm{~g}, 4.5 \mathrm{mmol}$), with 72% yield. $\mathrm{R}_{\mathrm{f}}=0.6(\mathrm{PE} / \mathrm{AcOEt}=70: 30) .{ }^{l} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.04\left(\mathrm{dd}, J_{I}=13.2\right.$ $\left.\mathrm{Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.48\left(\mathrm{dd}, J_{I}=13.6 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.96(\mathrm{~m}, 3 \mathrm{H}), 4.27\left(\mathrm{dd}, J_{1}=12.4\right.$ $\left.\mathrm{Hz} \& J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.39(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, 1 \mathrm{H}), 7.21-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.61\left(\mathrm{dd}, J_{l}=8 \mathrm{~Hz} \& J_{2}=5.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 35.6,47.3,50.4,54.1,65.3,78.3,115.9(J=21.7 \mathrm{~Hz})$, 126.7, 127.8, 128.1, 129, 131, 134.7, 138.3, 152.4, 160.7, 163.16, 170.6. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{5}: 462.4696$; found: 462.4693 .
15. Imide $1(3 \mathrm{~g}, 9.6 \mathrm{mmol})$ in THF (40.0 mL), was added NaHMDS ($1 \mathrm{M}, 9.6 \mathrm{~mL}, 9.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for $30 \mathrm{~min} \mathrm{TMSCl}(1.96 \mathrm{~mL}, 14.4 \mathrm{mmol})$ was added and stirred at rt for 4 h . Then (E)-1-methoxy-4-(2-nitrovinyl) benzene ($2.06 \mathrm{~g}, 11.5 \mathrm{mmol}$) and titanium tetrachloride ($0.32 \mathrm{~mL}, 2.88 \mathrm{mmol}$) were added to it and stirred at rt for 4 h . The final compound 15 was obtained as yellow solid ($2.6 \mathrm{~g}, 5.27 \mathrm{mmol}$), with 55% Yield. $R_{f}=0.4(\mathrm{PE} / \mathrm{AcOEt}=7: 3)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.59\left(\mathrm{dd}, J_{I}=13.6 \mathrm{~Hz}, J_{2}=3.6, \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 4.23\left(\mathrm{dd}, J_{l}=12.4 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right) .4 .4(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.2(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.6\left(\mathrm{dd}, J_{l}=8.8 \mathrm{~Hz}\right.$, $\left.J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 172.1, 153.3, 138.6, 129.3, 129.1, 128.3, 128.1, $127.9,127.6,127.3,127.1,79.2,65.7,56.1,51.1,48.9,36.8$ HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NaO}_{2}$: 229.1199 ; found: 229.1193.
16. Imide $1(312 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (5.0 mL), was added NaHMDS ($1 \mathrm{M}, 0.312 \mathrm{~mL}, 1 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for $30 \mathrm{~min} \mathrm{TMSCl}(0.20 \mathrm{~mL}, 1.5 \mathrm{mmol})$ was added and stirred at rt for 4 h . Then the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and (E)-1-chloro-2-(2-nitrovinyl) benzene ($0.22 \mathrm{~g}, 1.2 \mathrm{mmol}$) and titanium tetrachloride $(0.057 \mathrm{~g}, 0.30 \mathrm{mmol})$ were added to it and stirred at rt for 4 h . The final compound $\mathbf{1 6}$ was obtained as white solid. $\mathrm{R}_{\mathrm{f}}=0.11(\mathrm{PE} / \mathrm{AcOEt}=$ 100:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.62-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.97(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.13$ (s, 3 H), 1.53-1.60 (m, 1H), $2.13(\mathrm{dm}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddd}, J=16.7,4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.33-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-6.02(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=$
$15.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.6,14.3,22.9,28.6,40.9,46.9,85.5,118.3$, 128.8, 136.3, 153.9, 166.6. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClFN}_{2} \mathrm{O}_{5}$: 496.9147; found: 496.9138 .
17. Imide $\mathbf{1}$ ($1.5 \mathrm{~g}, 4.8 \mathrm{mmol}$) in THF (25.0 mL), was added NaHMDS ($1 \mathrm{M}, 4.8 \mathrm{~mL}, 4.8 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, \mathrm{TMSCl}(0.98 \mathrm{~mL}, 7.2 \mathrm{mmol})$ was added and stirred at rt for 4 h . Then 1-methoxy-3-[2-nitrovinyl]benzene ($1.03 \mathrm{~g}, 5.76 \mathrm{mmol}$) and titanium tetrachloride $(0.15 \mathrm{~mL}, 1.4 \mathrm{mmol})$ were added to it and stirred at rt for 4 h . The final compound 17 was obtained as yellow color solid ($860 \mathrm{mg}, 1.7 \mathrm{mmol}$), with 36% Yield. $\mathrm{R}_{\mathrm{f}}=0.4(\mathrm{PE} / \mathrm{AcOEt}$ $=7: 3$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 2.156$ (dd, $J_{l}=14.0 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (dd, $J_{l}=$ $\left.13.6 \mathrm{~Hz}, \mathrm{~J}_{2}=3.8,1 \mathrm{H}\right), 3.9(\mathrm{~m}, 2 \mathrm{H}), 4.28\left(\mathrm{dd}, J_{l}=12.8 \mathrm{~Hz}, \mathrm{~J}_{2}=4.0,1 \mathrm{H}\right), 4.35-4.54(\mathrm{~m}, 3 \mathrm{H}), 5.76$ $(\mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.1(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.1-7.29$ $(\mathrm{m}, 4 \mathrm{H}), 7.60\left(\mathrm{dd}, J_{I}=8.8 \mathrm{~Hz}, \mathrm{~J}_{2}=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta 36.8,47.7,50.9$, 55.03, 65.43, 78.81, 127.2, 128.7, 129.07, 129.41, 137.4, 154.86, 171.09. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{6} 492.4956$; found: 492.4952.
18. Imide $12(2.5 \mathrm{~g}, 7.35 \mathrm{mmol})$ in THF (20 mL), was added NaHMDS (1 M in THF, 7.3 mL , $7.36 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$ and stirred at same temperature for 30 min . Then TMSCl (1.5 $\mathrm{mL}, 11.01 \mathrm{mmol}$) was added and stirred at rt for 4 h . Then 1-methoxy-4-[2-nitrovinyl]benzene $(1.58 \mathrm{~g}, 8.81 \mathrm{mmol})$ and titanium tetrachloride $(0.24 \mathrm{~mL}, 2.2 \mathrm{mmol})$ were added to it. The final compound 18 was obtained as brown color solid ($1.85 \mathrm{~g}, 3.56 \mathrm{mmol}$), with 48% yield. $\mathrm{R}_{\mathrm{f}}=0.2$ $(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 2.6(\mathrm{~m}, 2 \mathrm{H}), 2.7(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $4.05(\mathrm{~m}, 1 \mathrm{H}), 4.5(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=10.8,1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.3(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.8(\mathrm{~m}, 3 \mathrm{H}), 8.09$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3): $\delta 37.1,47,55,66,78,113,120,126.8,127.3,128.7$, 129.9, 130.1, 134.5, 139.6, 160.8, 170.7 HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{8}$: 519.5027; found: 519.5021.
19. Imide 12 ($7 \mathrm{~g}, 20.6 \mathrm{mmol}$) in THF (20 mL), was added $\mathrm{NaHMDS}(1 \mathrm{M}, 20.5 \mathrm{~mL}, 20.6 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and stirred at same temperature for 30 min . Then $\mathrm{TMSCl}(4.2 \mathrm{~mL}, 31 \mathrm{mmol})$ was added and stirred at rt for 4 h . Then (E)-(2-nitrovinyl)benzene ($3.69 \mathrm{~g}, 24.72 \mathrm{mmol}$) and titanium tetrachloride ($0.68 \mathrm{~mL}, 6.18 \mathrm{mmol}$) were added to it. The final compound 19 was obtained as brown color solid ($6.9 \mathrm{~g}, 14 \mathrm{mmol}$), with 68% yield. $\mathrm{R}_{\mathrm{f}}=0.6(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 2.45$ (dd, $\left.J_{1}=13.2 \mathrm{~Hz}, J_{2}=3.0,1 \mathrm{H}\right), 3.0\left(J_{1}=13.5 \mathrm{~Hz}, J_{2}=2.8\right.$, $1 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.4(\mathrm{~m}, 2 \mathrm{H}), 4.6(\mathrm{~m}, 1 \mathrm{H}), 5.0(\mathrm{~m}, 1 \mathrm{H}), 6.0(\mathrm{~d}, J=11.6,1 \mathrm{H}), 6.95(\mathrm{~m}$, $2 \mathrm{H}), 7.2-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.6(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.9(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 8.0(\mathrm{~d}$, $J=8.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3): $\delta 36.9,37.1,37.4,54.94,66.02,78.8,122.55,127.5$, 128.2, 129.18, 133.3, 138.12, 151.00, 152.55. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7}: 489.4767$; found: 489.4763 .
20. Imide 10 ($2.6 \mathrm{~g}, 11.1 \mathrm{mmol}$) in THF (30 mL), was added NaHMDS ($1 \mathrm{M}, 11.1 \mathrm{~mL}, 11.1$ mmol) was added at $-78{ }^{\circ} \mathrm{C}$ and stirred at same temperature for 30 min . Then $\mathrm{TMSCl}(2.27 \mathrm{~mL}$, 16.7 mmol) was added and stirred at rt for 4 h . Then (E)-(2-nitrovinyl)benzene ($1.9 \mathrm{~g}, 13.3$ $\mathrm{mmol})$ and titanium tetrachloride $(0.367 \mathrm{~mL}, 3.33 \mathrm{mmol})$ were added to it. The final compound 20 was obtained as yellow solid ($3.3 \mathrm{~g}, 8.7 \mathrm{mmol}$), with 78% yield. $\mathrm{R}_{\mathrm{f}}=0.3$ ($\mathrm{PE} / \mathrm{AcOEt}=7: 3$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 1.3(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 2.60\left(\mathrm{dd}, J_{1}=13.2 \mathrm{~Hz}, J_{2}\right.$ $=3.6,1 \mathrm{H}), 3.93-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.5(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.8(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.225-7.34 (m, 8H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 15.1,36.9,40.4,46.6,65.8$, 127.2, 128.8, 129.3, 135.0, 137.8, 152.9, 174.8 HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}: 382.4098$; found: 382.4098 .
21. Imide 11 ($1.6 \mathrm{~g}, 4.2 \mathrm{mmol}$) in THF (20 mL), was added NaHMDS ($1 \mathrm{M}, 4.2 \mathrm{~mL}, 4.2 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and stirred at same temperature for 30 min . Then TMSCl $(0.8 \mathrm{~mL}, 6.3$ mmol) was added and stirred at rt for 4 h . Then (E)-(2-nitrovinyl)benzene ($0.76 \mathrm{~g}, 504 \mathrm{mmol}$) and titanium tetrachloride ($0.13 \mathrm{~mL}, 1.26 \mathrm{mmol}$) were added to it. The final compound 21 was obtained as off-white solid ($1.8 \mathrm{~g}, 3.4 \mathrm{mmol}$), with 81% yield.. $R f=0.3(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 2.48$ (dd, $J_{1}=13.6 \mathrm{~Hz}, \mathrm{~J}_{2}=3.2,1 \mathrm{H}$), 2.79 (dd, $J_{1}=13.2 \mathrm{~Hz}, \mathrm{~J}_{2}$ $=10.4,1 \mathrm{H}), 3.95-4.25(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 5.76,(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.8(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J$ $=8.0,2 \mathrm{H}), 7.15-7.5(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO): $\delta 35.6,47.4,54.3,66.1,78.2$, 122.0, 128.7, 129.6, 131.8, 137.5, 153.0, 171.2. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{5} 523.3752$; found: 523.3748.
23. Imide 14 ($3 \mathrm{~g}, 10.15 \mathrm{mmol}$) in THF (30 mL), was added NaHMDS ($1 \mathrm{M}, 10 \mathrm{~mL}, 10.1 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and stirred at same temperature for 30 min . $\mathrm{TMSCl}(2 \mathrm{~mL}, 15.3 \mathrm{mmol})$ was
then added and the reaction mixture was stirred at rt for 4 h . Then (E)-(2-nitrovinyl)benzene $(1.81 \mathrm{~g}, 12.2 \mathrm{mmol})$ and titanium tetrachloride $(0.33 \mathrm{~mL}, 3.04 \mathrm{mmol})$ were added to it. The final compound 23 was obtained as fluffy white solid ($2.2 \mathrm{~g}, 4.2 \mathrm{mmol}$), with 41% yield. $R f=0.5$ $(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3): \delta 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.49\left(\mathrm{dd}, J_{l}=13.2 \& J_{2}, 3.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 2 \mathrm{H}), 4.27\left(\mathrm{dd}, J_{l}=12 \mathrm{~Hz}, J_{2}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.38-4.57(\mathrm{~m}, 3 \mathrm{H}), 5.76(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.48(\mathrm{~m}, 10 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 36.8,47.8,49.9$, 55.04, 55.27, 65.5, 78.7, 113.7, 114.0, 120.5, 128.8, 129.2, 130.4, 130.8, 138.8, 152.9, 160.0, 161.2, 164.0, 171.08. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: 444.4792; found: 444.4785.

General procedure for the formation of quinolizidinones and unsaturated quinolizodinones

Nitro adduct $\mathbf{2}$ or $\mathbf{1 8}(1.00 \mathrm{mmol})$ and appropriate cyclic imines (1-2 eq) were taken in water (13 mL) under argon in a sealed vessel. The resulting mixture was heated at $70^{\circ} \mathrm{C}$ for $16-30 \mathrm{~h}$. After which it was cooled to rt. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (pet. ether/ethyl acetate $=70 / 30$) to afford pure product.
25. Nitro adduct $2(250 \mathrm{mg}, 0.54 \mathrm{mmol})$ and 3, 4-dihydroisoquinoline ($78 \mathrm{mg}, 0.59 \mathrm{mmol}$) were taken in water (3.0 mL) under argon in a sealed vessel. The resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 16 h . Final compound $\mathbf{2 5}$ was purified by silica gel column chromatography (pet. ether/ethyl acetate $=85 / 15)$ to afford 60 mg of pure product in 32% yield. $\mathrm{R}_{\mathrm{f}}=0.5(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $2.8(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=\mathrm{Hz}, 1 \mathrm{H})$, $5.0(\mathrm{~m}, 1 \mathrm{H}), 5.4(\mathrm{~d}, J=1 \mathrm{H}), 5.56(\mathrm{~d}, J=\mathrm{Hz}, 1 \mathrm{H}), 6.92-7.3(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CDCl} 3): \delta 14.1,22.6,28.14,31.9,39.04,50.2,51.8,56.9,94.7,115.0,126.5,128.4,131.18$, 139.2, 172.0. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FNO}: 369.1308$; found: 369.4300.
30. Nitro adduct $18(0.25 \mathrm{~g}, 0.48 \mathrm{mmol})$ and 3,4-dihydroisoquinoline ($80 \mathrm{mg}, 0.6 \mathrm{mmol}$) were taken in water (2.4 mL) under argon in a sealed vessel. The resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 16 h . Final compound 30 was purified by silica gel column chromatography (pet. ether/ethyl acetate $=80 / 20$) to afford 80 mg of pure product (35%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $2.95(\mathrm{~m}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.2(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~d}, J=10.41 \mathrm{H}), 5.5(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 6.62$ $(\mathrm{s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82\left(\mathrm{~d}, J_{l}=8 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.01(\mathrm{brs}, 2 \mathrm{H}), 7.2-7.45(\mathrm{~m}$,

7 H), 8.05 (brs, 1H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3): $\delta 28.6,29.6,46.7,55.2,58.6,75.5,89.4$, 113.7, 119.5, 126.9, 128.5, 129.6, 130.3, 133.4, 136.6, 160.0, 167.4. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$: 473.4773; found: 473.4773.
26. Nitro adduct $2(0.1 \mathrm{~g}, 0.26 \mathrm{mmol})$ and 3,4-dihydroisoquinoline ($45 \mathrm{mg}, 0.35 \mathrm{mmol}$) were taken in water $(2.0 \mathrm{~mL})$ under argon in a sealed vessel. The resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 20 h . Final compound 26 was purified by silica gel column chromatography (pet. ether/ethyl acetate $=80 / 20$) to afford pure 42 mg of product. $\mathrm{R}_{\mathrm{f}}=0.65(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl} 3): 2.95(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.8-4.0(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl3): $\delta 14.1,22.6,29.3,31.9,39.0,45.6,54.2,105.5,115.7,124.2,127,128.06,129.1,129.9$, 130,134.6, 135.3, 142.17, 160.6, 163.06, 169. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{FNO}: 369.4308$; found: 369.4315 .
32. Nitro adduct $19(0.1 \mathrm{~g}, 0.21 \mathrm{mmol})$ and 3,4-dihydroisoquinoline ($45 \mathrm{mg}, 0.35 \mathrm{mmol}$) were taken in water (1.05 mL) under argon in a sealed vessel. The resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 20 h . Final compound $\mathbf{3 2}$ was purified by silica gel column chromatography (pet. ether/ethyl acetate $=80 / 20$) to afford pure 36 mg of product. $\mathrm{R}_{\mathrm{f}}=0.65(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.92-2.93 (m, 2H), 3.88-3.91 (m, 1H), 4.19-4.2.7 (m, 2H), 4.44-4.49 $(\mathrm{m}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, 8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.0,29.3,39.1,45.5,58.3,60.3$, 106.6, 124.2, 125.5, 127.2, 128.6, 129.9, 134.7, 142.1, 149.4, 167.7 HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: 396.1474; found: 396.1501.
33. Nitro adduct $18(0.1 \mathrm{~g}, 0.21 \mathrm{mmol})$ and 3,4 -dihydroisoquinoline ($45 \mathrm{mg}, 0.35 \mathrm{mmol}$) were taken in water $(0.36 \mathrm{~mL})$ under argon in a sealed vessel. The resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 20 h . Final compound $\mathbf{3 2}$ was purified by silica gel column chromatography (pet. ether/ethyl acetate $=80 / 20$) to afford pure 36 mg of product. $\mathrm{R}_{\mathrm{f}}=0.65(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 2.92-2.94 (m, 2 H), $3.75(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.82(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.2 .8(\mathrm{~m}$, $2 \mathrm{H}), 4.52-4.59(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.90(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 7 \mathrm{H})$, $7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, 8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 22.7,31.6,43.5$,
57.7, 120.4, 124.3, 125.4, 125.7, 127.1, 127.8, 128.2, 129.7, 129.9, 133.6, 134.9, 135.7, 143.2, 168.6 HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: 426.4639; found: 426.5645.

General procedure for the synthesis of piperidinones

Nitro adduct 2 (1.00 mmol), ammonium acetate (5 eq) and appropriate aldehydes (1.5 mmol) were taken in ethanol $(5.4 \mathrm{~mL})$ under argon. The resulting mixture was heated in a sealed vessel and refluxed for 10 h . After which it was cooled to rt . The mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (pet. ether/ethyl acetate $=1 / 1$) to afford pure product.
24.Nitro adduct $\mathbf{2}(0.25 \mathrm{~g}, 0.54 \mathrm{mmol})$, ammonium acetate $(0.21 \mathrm{~g}, 2.7 \mathrm{mmol})$ and p -anisaldehyde $(0.10 \mathrm{~mL}, 0.81 \mathrm{mmol})$ were taken in ethanol $(5.4 \mathrm{~mL})$ under argon in a sealed vessel. The resulting mixture was heated under reflux for 10 h . Final compound $\mathbf{2 4}$ was purified by silica gel column chromatography (pet. ether/ ethyl acetate $=50 / 50$) to afford pure product as a off-white solid ($130 \mathrm{mg}, 57 \%$). $\mathrm{R}_{\mathrm{f}}=0.11(\mathrm{PE} / \mathrm{AcOEt}=1: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}, \mathrm{CDCl} 3): 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~m}, 2 \mathrm{H}), 5.2(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 6.92-7.05(\mathrm{~m}, 7 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3): ~ \delta 52.3,53.5,55.3,60.1,92.3,115.4,127.5,129.01,130.4,132.7,135.2,160.8$, 170.4 HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{4}$: 420.4329; found: 420.4322.
27. Nitro adduct $2(0.25 \mathrm{~g}, 0.54 \mathrm{mmol})$, ammonium acetate ($0.21 \mathrm{~g}, 2.71 \mathrm{mmol}$) and mfluorobenzaldehyde $(0.09 \mathrm{~mL}, 0.81 \mathrm{mmol})$ were taken in ethanol $(5.4 \mathrm{~mL})$ under argon in a sealed vessel. The resulting mixture was heated under reflux for 10 h . Final compound 27 was purified by silica gel column chromatography (pet. ether/ ethyl acetate $=70 / 30$) to afford pure product as a off-white solid ($140 \mathrm{mg}, 63 \%$) $\left(\mathrm{R}_{\mathrm{f}}=0.4(\mathrm{PE} / \mathrm{AcOEt}=1: 1) .{ }^{1} \mathrm{H}\right.$ NMR $(400 \mathrm{MHz}$, DMSO-D6): $4.06(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.7(\mathrm{t}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.9(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.1-7.25(\mathrm{~m}, 9 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-D6): $\delta 50.31,52.3,59.1,91.5,114.2,115.8,116,124.05,127.9,130.6,131.2$, $134.5,140.1,150.6,160.9,163.3,169.6$, calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}: 408.3974$; found: 408.3969
28. Nitro adduct $2(0.25 \mathrm{~g}, 0.54 \mathrm{mmol})$, ammonium acetate ($0.21 \mathrm{~g}, 2.71 \mathrm{mmol})$ and $3,4-$ dichlorobenzaldehyde $(0.14 \mathrm{~mL}, 0.81 \mathrm{mmol})$ were taken in ethanol $(5.4 \mathrm{~mL})$ under argon in a
sealed vessel. The resulting mixture was heated under reflux for 10 h . Final compound $\mathbf{2 8}$ was purified by silica gel column chromatography (pet. ether/ ethyl acetate $=75 / 25$) to afford pure product as a white solid $(0.21 \mathrm{~g}, 84 \%) .\left(\mathrm{R}_{\mathrm{f}}=0.2(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}\right.$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): 3.87-3.92 (m, 2H), $5.10(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 6.9-$ $7.02(\mathrm{~m}, 6 \mathrm{H}), 7.2-7.26(\mathrm{~m}, 4 \mathrm{H}) .7 .5-7.55(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.04,53.28$, $59.5,91.9,115.5,115.7,126.3,127.5,128.7,130.4,131.61,132.2,134.6,135.8,160.8,163.2$, 170.5 calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}_{3}$: 459.2971; found: 459.2974 .
29. Nitro adduct $2(0.25 \mathrm{~g}, 0.54 \mathrm{mmol})$, ammonium acetate ($0.21 \mathrm{~g}, 2.71 \mathrm{mmol}$) and 3ethoxybenzaldehyde ($0.13 \mathrm{~g}, 0.88 \mathrm{mmol}$) were taken in ethanol (5.4 mL) under argon in a sealed vessel. The resulting mixture was heated under reflux for 10 h . Final compound $\mathbf{2 9}$ was purified by silica gel column chromatography (pet. ether/ ethyl acetate $=75 / 25$) to afford pure product as a brown color solid ($160 \mathrm{mg}, 69 \%$). $\left(\mathrm{R}_{\mathrm{f}}=0.2(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}\right.$ NMR (400 MHz , DMSO$\left.\mathrm{D}_{6}\right): 1.35(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.05(\mathrm{q}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.99(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.29(\mathrm{t}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.7,52.2,53.4,60.5,63.6,92.2$, $113.1,115.5,115.8,118.7,127.5,128.4,129.03,130.4,132.7,135.2,137.1,159.74,170.3$ calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{4}$: 434.4595; found: 434.4592.
31. Nitro adduct $2(0.25 \mathrm{~g}, 0.54 \mathrm{mmol})$, ammonium acetate $(0.21 \mathrm{~g}, 2.71 \mathrm{mmol})$ and 4(trifluoromethoxy)benzaldehyde ($0.09 \mathrm{~g}, 0.81 \mathrm{mmol}$) were taken in ethanol $(5.4 \mathrm{~mL})$ under argon in a sealed vessel. The resulting mixture was heated under reflux for 10h. Final compound $\mathbf{3 1}$ was purified by silica gel column chromatography (pet. ether/ ethyl acetate $=70 / 30$) to afford pure product as a brown color solid ($121 \mathrm{mg}, 47 \%$). $\left(\mathrm{R}_{\mathrm{f}}=0.2(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}\right.$ NMR (400 MHz, DMSO-D ${ }_{6}$): $4.08(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.3(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H})$, $5.75(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.1-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.6$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.4(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.1,53.3,59.8,92.1,115.5$, 119.0. 120.9, 127.5, 128.1, 129, 130.4, 130.5, 132.4, 134.9, 137.2, 150.2, 160.7, 163.2, 170.5 calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$: 474.4043; found: 474.4044.
37. Nitro adduct $2(0.29 \mathrm{~g}, 0.63 \mathrm{mmol})$, ammonium acetate $(0.24 \mathrm{~g}, 3.13 \mathrm{mmol})$ and 3bromobenzaldehyde $(0.11 \mathrm{~g}, 0.94 \mathrm{mmol})$ were taken in ethanol $(6 \mathrm{~mL})$ under argon in a sealed
vessel. The resulting mixture was heated under reflux for 10 h . Final compound $\mathbf{3 1}$ was purified by silica gel column chromatography (pet. ether/ ethyl acetate $=70 / 30$) to afford pure product as a brown color solid ($152 \mathrm{mg}, 54 \%$). $\left(\mathrm{R}_{\mathrm{f}}=0.3(\mathrm{PE} / \mathrm{AcOEt}=7: 3) .{ }^{1} \mathrm{H}\right.$ NMR (400 MHz , DMSO$\left.\mathrm{D}_{6}\right): 4.03-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.80(\mathrm{~m}, 1 \mathrm{H})$, 6.96-7.0 (m, 2H), 7.10-7.19 (m, 7H), 7.35-7.38 (m, 2H), 7.58-7.61 (m, 1H), $7.86(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H})$. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BrFN}_{2} \mathrm{O}_{3}$: 469.3030; found: 469.3457 .

General proccedure for the synthesis of pyrrolidinones

Appropriate nitro adduct (1.00 mmol), was hydrogenated with Pd-C w/w (10\%) in Ethanol (6-7 mL). The resulting mixture was stirred under hydrogenation at 40 psi at rt for 2 h . After completion of reaction by TLC, the reaction mixture was filtered through celite-545 bed and concentrated under reduced pressure to get crude product. The crude product was purified by silica gel (100-200mesh) using 20-50\% ethyl acetate in pet ether as eluent pure products.
34. Nitro adduct $2(300 \mathrm{mg}, 0.64 \mathrm{mmol})$ was hydrogenated with $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$ and ethanol $(6.4 \mathrm{~mL})$. The final compound $\mathbf{3 3}$ was obtained 110 mg of as off-white solid $(68 \%) .\left(\mathrm{R}_{\mathrm{f}}=0.25\right.$ $(\mathrm{PE} / \mathrm{AcOEt}=1: 1) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-D 6): 3.59-3.7 (m, 2H), $3.98(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.93$ $(\mathrm{m}, 6 \mathrm{H}), 7.06(\mathrm{~m}, 3 \mathrm{H}), 8.15$ (brs, 1 H$).{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-D D_{6}): $\delta 44.8,45.3,51.8,114.4$, 126.2, 127.5, 128.4, 131.1, 132.8, 139.1, 159.0, 175.2, calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}$: 255.2869; found: 255.2859 .
35. Nitro adduct 15 ($300 \mathrm{mg}, 0.6 \mathrm{mmol}$) was hydrogenated with $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$ and ethanol $(6 \mathrm{~mL})$. The final compound 34 was obtained 80 mg of as brown color solid $(47 \%) .\left(\mathrm{R}_{\mathrm{f}}=0.23\right.$ $(\mathrm{PE} / \mathrm{AcOEt}=1: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{D}_{6}$): 3.48-3.56 (m, 2H), $3.7(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~m}$, $2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.8(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-D ${ }_{6}$: $\delta 43.5,52.2,54.2,54.9,113.9,114.7,128.3,129.3,130.2,131.19$, 134.4, 158.2, 159.8, 162.7, 169.1. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FNO}_{2}$: 285.3128; found: 285.3128.
36. Nitro adduct 23 ($300 \mathrm{mg}, 0.6 \mathrm{mmol}$) was hydrogenated with $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$ and ethanol (6.7 mL). The final compound $\mathbf{3 5}$ was obtained 120 mg of as brown color solid $(84 \%) .\left(\mathrm{R}_{\mathrm{f}}=0.15\right.$ (PE/AcOEt = 1:1). 1H NMR (400 MHz , DMSO-D6): 3.5-3.65 (m, 2H), 3.86 (m, 2H), 7.15 (d, J $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .9 .8$
(brs, 1 H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-D 6): $\delta 44.1,52.9,54.1,126.9,127.0,128.0,128.5,138.4$, 139.7, 169. calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}: 237.2964$; found: 237.2962.

General procedure for the catalytic asymmetric Michael reaction.

22. 0.2 equivalent of $\mathrm{Cu}(\mathrm{OTf})_{2}(\mathrm{mg}, \mathrm{mmol})$ was taken in an oven dried schlenk vial and was purged with argon thrice. Dry THF (3 mL) was added to it followed by addition of 0.2 eq. of $4,4^{\prime}$ -(isopropyl)-substituted isopropylidene-bridged $2,2^{\prime}$-bis- $1,3^{\prime}$-oxazoline ligand (mg, mmol) and the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 4 h , during which the reaction mixture turned thick green from light blue. This indicates the formation of the desired catalyst $\mathrm{Cu}-4,4^{\prime}$-(isopropyl)substituted isopropylidene-bridged $2,2^{\prime}$-bis-1, 3^{\prime}-oxazoline.

Simultaneously to an oven dried three-necked flask was added imide $\mathbf{1 3}(1.00 \mathrm{mmol})$ in anh.THF $(5.0 \mathrm{~mL})$ under argon. To the resulting solution was added sodium hexamethyldisilylazide (1 M NaHMDS in THF, 1.00 mmol) at $-78^{\circ} \mathrm{C}$ and stirred at same temperature for 30 min . After which trimethylsilyl chloride (TMSCl) (1.5 eq.) was added and was further stirred at rt for $3-4 \mathrm{~h}$. It was then cooled to $-20^{\circ} \mathrm{C}$, followed by addition of Cu-bis-isopropyloxazolidinone catalyst $(0.057 \mathrm{~g}$, 0.3 mmol). They were stirred for 0.5 h at that temperature and -nitrostyrene ($\mathrm{mg}, \mathrm{mmol}$) was added to the reaction mixture and was stirred for $\sim 24 \mathrm{~h}$. After stirring at that temperature for 4 h , the solution was poured into cooled water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} x 4)$. The combined extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate $=90 / 10$) to afford pure product in 50% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.\mathrm{D}_{6}\right): \delta 3.14\left(\mathrm{dd}, J_{1}=13.2 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.48\left(\mathrm{dd}, J_{I}=13.6 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.27-$ $4.34(\mathrm{~m}, 4 \mathrm{H}), 4.39-4.45(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.85(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.29(\mathrm{~m}$, $7 \mathrm{H}), 7.63-7.66\left(\mathrm{~d}, J_{l}=8 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 38.6,45.3,54.4,56.1,65.3$, $78.3,117.9$ ($J=21.7 \mathrm{~Hz}$), 127.7, 128.8, 129.1, 130.1, 131, 134.7, 138.3, 153.4, 161.7, 163.16, 172.6. HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{5}: 372.3471$; found: 372.3462 .

