Supporting information:

A novel and metal-free approach towards α -ketoamides using TBHP/I₂-promoted tandem reaction of amines with β -diketones via C–C bond cleavage

Xiaobin Zhang,^[a] Min Wang,^[a] Yicheng Zhang,^[a] and Lei Wang*^{[a][b]}

[a] Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P
R China
Tel: + 86-561-3802-069 Fax: + 86-561-3090-518 E-mail: leiwang@chnu.edu.cn
[b] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

Table of Contents for Supporting Information

1. General considerations	.2
2. Typical procedure for the synthesis of α-ketoamides	.2
3. Synthesis of <i>N</i> -iodomorpholine-hydrogen iodide	2
4. Synthesis of 2-morpholino-1,3-diphenylpropane-1,3-dione	3
5. Characterization data for the products	.4
6. ¹ H and ¹³ C NMR spectra of the products	.11
7. References	.29

1. General considerations

All ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometers (400 MHz or 100 MHz, respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on a Waters Micromass GCT instrument. Products were purified by flash chromatography on 100–200 mesh silica gels, SiO₂. 1,3-Diaryl diketones were prepared by Claisen condensation of the corresponding ester and ketone (Hu, A.-G.; Lin, W.-B.; *Org. Lett.* **2005**, *7*, 455–58). Unless otherwise noted, the chemicals and solvents were purchased from commercial suppliers either from Aldrich, USA or Shanghai Chemical Company, China and were used without purification prior to use.

2. General procedure for the synthesis of α-ketoamides

A sealable reaction tube equipped with a magnetic stirrer bar was charged with β -diketone (0.5 mmol), secondary amine (1.5 mmol), I₂ (0.20 mmol), *tert*-butyl hydroperoxide (TBHP, 1.5 mmol). The reaction vessel was carried out at 80 °C. After stirring the mixture for 8 h, it was diluted with ethyl acetate, washed with water and brine, dried with Mg₂SO₄. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (eluant: hexane/ethyl acetate 2:1) to afford the corresponding product.

3. Synthesis of *N*-iodomorpholine-hydrogen iodide^[1]

A solution of iodine (2.54 g, 10 mmol) in methanol (40 mL) was treated dropwise with morpholine (0.87 mL, 10 mmol). The solution was stirred for 4 h then solid was isolated by filtration. The solid was transferred to a round bottom flask and dried under vacuum. This procedure gave *N*-iodomorpholine-hydrogen iodide as an orange crystalline powder, which was used without further purification and characterization.

4. Synthesis of 2-morpholino-1,3-diphenylpropane-1,3-dione

1,3-Diphenylpropane-1,3-dione 5.0 (1a,mmol, 1.12 g) and N-iodomorpholine-hydrogen iodide (10 mmol, 3.41 g) were added to a solution of morpholine (10 mmol, 0.87 g) in ethyl acetate (20 mL). The reaction was stirred for 8 h at 80 ⁰C under N₂. After completion of reaction, the mixture was filtered through a thin layer of silica gel. The solvent was evaporated and the residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 7:1) to provide product 2-morpholino-1,3-diphenylpropane-1,3-dione (0.81 g, 52% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13$ (d, J = 7.6 Hz, 4H), 7.57 (t, J = 7.2 Hz, 2H), 7.45 (t, J = 7.6Hz, 4H), 5.56 (s, 1H), 3.72 (t, J = 4.8 Hz, 4H), 2.82 (t, J = 4.8 Hz, 4H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 194.69, 135.82, 133.73, 129.08, 128.65, 78.39, 67.31, 51.09.$ HRMS (ESI) ([M]+H) Calcd. for C₁₉H₂₀NO₃: 310.1443, Found: 310.1438.

5. Characterization data for the products

1-Morpholino-2-phenylethane-1,2-dione (3a):^[2] Yellow solid.

¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 8.0 Hz, 2H), 3.79 (br, s, 4H), 3.65 (t, *J* = 4.8 Hz, 2H), 3.38 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 191.14, 165.47, 134.94, 133.05, 129.66, 129.10, 66.72, 66.64, 46.26, 41.63.

1-Morpholino-2-(p-tolyl)ethane-1,2-dione (3b):^[3] Yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.82 (d, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 3.75 (br, s, 4H), 3.61 (t, *J* = 4.8 Hz, 2H), 3.34 (t, *J* = 4.8 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.88, 165.66, 146.25, 130.64, 129.80, 129.74, 66.69, 66.61, 46.23, 41.55, 21.86.

1-Morpholino-2-(o-tolyl)ethane-1,2-dione (3c):^[3] Yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.72 (d, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.35–7.31 (m, 2H), 3.79 (br, s, 4H), 3.68 (t, *J* = 4.4 Hz, 2H), 3.40 (t, *J* = 4.4 Hz, 2H),

2.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 193.08, 166.21, 141.60, 133.85, 132.68, 131.80, 131.55, 126.21, 66.66, 66.63, 46.28, 41.65, 21.76.

1-(4-Methoxyphenyl)-2-morpholinoethane-1,2-dione (3d):^[2] Yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.93 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 3.90 (s, 3H), 3.79 (br, s, 4H), 3.65 (t, *J* = 4.8 Hz, 2H), 3.38 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 189.82, 165.83, 165.05, 132.14, 126.12, 114.44, 66.75, 66.66, 55.67, 46.30, 41.57.

1-(4-Chlorophenyl)-2-morpholinoethane-1,2-dione (3e):^[3] Yellow solid.

¹H NMR (400 MHz, CDCl₃): $\delta = 7.91$ (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 3.78 (br, s, 4H), 3.66 (t, J = 4.8 Hz, 2H), 3.38 (t, J = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.67$, 164.90, 141.59, 131.48, 131.02, 129.48, 66.72, 66.62, 46.28, 41.71.

1-(4-Bromophenyl)-2-morpholinoethane-1,2-dione (3f):^[3] Yellow solid.

¹H NMR (400 MHz, CDCl₃): δ = 7.83 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 3.79 (br, s, 4H), 3.67 (t, *J* = 4.8 Hz, 2H), 3.38 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 189.88, 164.86, 132.49, 131.90, 131.05, 129.67, 66.73, 66.64, 46.29, 41.72.

1-(3-Bromophenyl)-2-morpholinoethane-1,2-dione (3g): Yellow solid.

¹H NMR (400 MHz, CDCl₃): δ = 8.08 (s, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 3.77 (br, s, 4H), 3.64 (t, *J* = 4.4 Hz, 2H), 3.36 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 189.46, 164.59, 137.69, 134.85, 132.33, 130.63, 128.31, 123.32, 66.69, 66.60, 46.27, 41.74. HRMS (EI) ([M]⁺) Calcd. for C₁₂H₁₂BrNO₃: 297.0004, Found: 297.0001.

1-(4-Iodophenyl)-2-morpholinoethane-1,2-dione (3h): Yellow solid.

¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 5.6 Hz, 2H), 7.64 (d, *J* = 5.2 Hz, 2H), 3.76 (br, s, 4H), 3.63 (br, s, 2H), 3.35 (br, s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.24, 164.83, 138.47, 132.37, 130.78, 103.61, 66.70, 66.61, 46.25, 41.70. HRMS (EI) ([M]⁺) Calcd. for C₁₂H₁₂INO₃: 344.9864, Found: 344.9862.

4-(2-Morpholino-2-oxoacetyl)benzonitrile (3i):^[4] Yellow solid.

¹H NMR (400 MHz, CDCl₃): $\delta = 8.05$ (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 3.77 (br, s, 4H), 3.65 (t, J = 4.4 Hz, 2H), 3.38 (t, J = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.05$, 164.11, 136.04, 132.78, 130.04, 117.85, 117.54, 66.68, 66.57, 46.29, 41.86.

1-(Furan-2-yl)-2-morpholinoethane-1,2-dione(3j): Yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.73 (s, 1H), 7.40 (d, *J* = 3.6 Hz, 1H), 6.63–6.62 (m, 1H), 3.78 (d, *J* = 4.4 Hz, 2H), 3.75 (d, *J* = 4.0 Hz, 2H), 3.69 (t, *J* = 4.4 Hz, 2H), 3.49 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.77, 163.89, 150.23, 148.91, 122.56, 112.96, 66.77, 66.58, 46.36, 41.97. HRMS (EI) ([M]⁺) Calcd. for C₁₀H₁₁NO₄: 209.0686, Found: 209.0688.

1-Morpholino-2-(thiophen-2-yl)ethane-1,2-dione (3k):^[5] Yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (d, *J* = 3.6 Hz, 1H), 7.81 (d, *J* = 4.8 Hz, 1H), 7.19 (t, *J* = 4.0 Hz, 1H), 3.77 (d, *J* = 4.0 Hz, 4H), 3.68 (t, *J* = 4.4 Hz, 2H), 3.49 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 182.79, 164.33, 140.30, 136.74, 136.26, 128.71, 66.81, 66.62, 46.45, 41.96.

1-Phenyl-2-(piperidin-1-yl)ethane-1,2-dione (3l):^[2] Light yellow solid.

¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 7.6 Hz, 2H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 3.70 (br, s, 2H), 3.28 (t, *J* = 5.2 Hz, 2H), 1.69 (br, s, 4H), 1.54 (br, s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 191.92, 165.46, 134.62, 133.28, 129.54, 128.98, 47.03, 42.16, 26.18, 25.43, 24.35.

1-(4-Chlorophenyl)-2-(piperidin-1-yl)ethane-1,2-dione (3m):^[2] Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 3.68 (br, s, 2H), 3.27 (t, *J* = 5.6 Hz, 2H), 1.68 (br, s, 4H), 1.54 (br, s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.49, 164.93, 141.22, 131.70, 130.90, 129.38, 47.04, 42.25, 26.23, 25.42, 24.32.

1-(4-Methoxyphenyl)-2-(piperidin-1-yl)ethane-1,2-dione (3n):^[2] Yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.85 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.81 (s, 3H), 3.62 (br, s, 2H), 3.22 (t, *J* = 5.6 Hz, 2H), 1.62 (br, s, 4H), 1.47 (br, s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.53, 165.68, 164.67, 131.83, 126.21, 114.19, 55.49, 46.91, 41.94, 26.08, 25.32, 24.23.

1-(4-Methylpiperazin-1-yl)-2-phenylethane-1,2-dione (30): Yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 7.2 Hz, 2H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 3.79 (t, *J* = 4.8 Hz, 2H), 3.37 (t, *J* = 4.8 Hz, 2H), 2.51 (t, *J* = 4.8 Hz, 2H), 2.38 (t, *J* = 4.8 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 191.44, 165.38, 134.79, 133.13, 129.63, 129.03, 54.85, 54.40, 45.92, 45.71, 41.10. HRMS (ESI) ([M]+H) Calcd. for C₁₃H₁₇N₂O₂: 233.1290, Found: 233.1285.

1-(4-Bromophenyl)-2-(4-methylpiperazin-1-yl)ethane-1,2-dione (3p): Yellow solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.83$ (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 3.81 (t, J = 4.8 Hz, 2H), 3.39 (t, J = 4.8 Hz, 2H), 2.55 (t, J = 4.8 Hz, 2H), 2.42 (t, J = 4.8 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.18$, 164.82, 132.44, 131.03, 54.84, 54.35, 45.84, 45.66, 41.13. HRMS (EI) ([M]⁺) Calcd. for C₁₂H₁₂INO₃: 310.0317, Found: 344.0314.

2-(4-Chlorophenyl)-N,N-diethyl-2-oxoacetamide (3q):^[6] Yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.89 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 3.56 (q, *J* = 7.2 Hz, 2H), 3.24 (q, *J* = 7.2 Hz, 2H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 190.12, 166.22, 141.14, 131.74, 130.96, 129.34, 42.14, 38.95, 14.16, 12.80.

6. ¹H and ¹³C NMR spectra of the products

7. References

- 1. J. E. Hein, J. C. Tripp, L. B. Krasnova, K. B. Sharpless, V. V. Fokin, *Angew. Chem. Int. Ed.* **2009**, *48*, 8018.
- 2. F.-T. Du, J.-X. Ji, Chem. Sci. 2012, 3, 460-465.
- 3. J. Liu, R. Zhang, S. Wang, W. Sun, C. Xia. Org. Lett. 2009, 11, 1321-1324.
- 4. E. R. Murphy, J. R. Martinelli, N. Zaborenko, S. L. Buchwald, K. F. Jensen, *Angew. Chem. Int. Ed.* 2007, *46*, 1734–1737.
- L. S. Konstantinova, O. I. Bol'shakov, N. V. Obruchnikova, S. P. Golova, Y. V. Nelyubina, K. A. Lyssenko, O. A. Rakitin, *Tetrahedron* 2010, *66*, 4330–4338.
- 6. N. Tsukada, Y. Ohba, Y. Inoue. J. Organomet. Chem. 2003, 687, 436-443.