Supporting information:

The facile synthesis of 2-bromoindoles via Cs_2CO_3 -promoted intramolecular cyclization of 2-(gem-dibromovinyl)anilines under transition-metal-free conditions

Pinhua Li,^[a] Yong Ji,^[b] Wei Chen,^[a] Xiuli Zhang,^[b] and Lei Wang*^[a] [c]

[a] Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P R China

Tel: +86-561-3802-069 Fax: +86-561-3090-518 E-mail: leiwang@chnu.edu.cn

[b] Department of Chemistry, Anhui Agricultural University, Hefei, Anhui 230062, P R China

[c] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, Shanghai 200032, P R China

Table of Contents for Supporting Information

1. General considerations	2
2. General procedures	2
3. The ¹ H NMR spectra of isotope experiments	7
4. ICP-AES analysis of Cs ₂ CO ₃ sample	8
5. Characterization data for starting materials and all the products	9
6. ¹ H and ¹³ C NMR spectra of compounds	21
7. References	68

1. General considerations

All reagents were purchased from commercial suppliers and used without further purification. 2-(*gem*-Dibromovinyl)-*N*-methylsulfonylanilines were prepared according to the literature. All Cs₂CO₃-promoted intramolecular cyclization reactions of *gem*-dibromoolefins were carried out under an air atmosphere. H NMR and C NMR spectra were measured on a Bruker Avance NMR spectrometer (400 MHz or 100MHz, respectively) with CDCl₃ as solvent and recorded in ppm relative to internal tetramethylsilane standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on a Waters Micromass GCT instrument.

2. General procedures

(1) Typical synthetic procedure of 6a-D

$$\begin{array}{c|c} & & & \text{CO}_2\text{Me} \\ & & & \text{CO}_2\text{Me} \\ & & & \text{Et}_2\text{O} \end{array} & \begin{array}{c} & & & \text{[C}_5\text{H}_5\text{NH][CrO}_3\text{CI] (PCC)} \\ & & & \text{CH}_2\text{CI}_2 \end{array} & \begin{array}{c} & & & \text{D} \\ & & & & \text{NO}_2 \end{array}$$

To a suspension of methyl 2-nitrobenzoate (5.44 g, 30 mmol) in Et₂O (90 mL) was added LiAlD₄ (0.672 g, 16 mmol) in several portions at 0 °C. After addition, the mixture was stirred at 0 °C for another 2 h before quenched by pouring into HCl (1.0 mol/L, 100 mL). The resulting mixture was extracted with Et₂O (2×60 mL), washed with NaHCO₃ (aq. 20 mL), brine (20 mL), and dried over MgSO₄. The crude material was chromatographed with 25% EtOAc in hexanes to afford the benzyl alcohol as a yellow solid (1.52 g, 33%), which was directly used in next step.

The benzyl alcohol (1.50 g) solution in DCM (30 mL) was added PCC (pyriddinium chlorochromate, 3.2 g), and the mixture was stirred at room temperature overnight. The resulting mixture was filtered through a celite pad. After the celite was washed with DCM (40 mL), the

combined organic solvent was evaporated and chromatographed with 20% EtOAc in hexanes to give the deuterated 2-nitrobenzaldehyde-D (**I**) as a slightly yellow solid (1.19 g, 80%).

To a solution of 2-nitrobenzaldehyde-D (I, 1.19 g, 7.76 mmol) and CBr₄ (3.86 g, 11.64 mmol) in DCM (40 mL) at 0 °C was added dropwise a solution of PPh₃ (6.10 g, 23.28 mmol) in DCM (20 mL) by an addition funnel. The addition rate was controlled so that the internal temperature was at 1-5 °C. After addition (about 1 h), the mixture was stirred for another 0.5 h before it was warmed to room temperature, and stirred for an additional 1 h. The reaction mixture was filtered through a short plug of silica gel (12 g) and was washed with a copious amount of DCM until no product was found. Solvent was removed under reduced pressure to give a mixture of the desired intermediate and triphenylphosphine oxide. To the mixture was added EtOH (95%, 20 mL) and SnCl₂·H₂O (8.76 g, 38.8 mmol). The suspension was heated at 100 °C (reflux) for 45 min, and then cooled to room temperature. After most of the ethanol was removed under reduced pressure, H₂O (20 mL) and EtOAc (20 mL) were added. To the resulting mixture, solid K₂CO₃ was added carefully until pH > 10. The EtOAc layer was separated from the heterogeneous mixture, and the aqueous phase was extracted with EtOAc until it was free of the product (4×20 mL). The combined organic solution was washed with brine and dried over Na₂SO₄/K₂CO₃. Solvent was removed under reduced pressure and the residue was redissolved in Et₂O. The resulting precipitated Ph₃P(O) was removed by filtration. The product was further purified by flash chromatography using 10% EtOAc in hexanes. The product (II) was obtained as a white solid (1.60 g, 74% yield over 2 steps).

$$\begin{array}{c|c} D & & D & Br \\ \hline & Br & CH_3SO_2Cl-Pyridine & Br \\ NH_2 & & CH_2Cl_2 & NHMs \\ \hline II & & 1a-D & \\ \end{array}$$

To a solution of **II** (1.38g, 5.0 mmol) and pyridine (0.8 mL, 10 mmol) in DCM (10 mL) was added dropwise MsCl (0.58 mL, 7.5 mmol) at 0 °C. The mixture was warmed slowly to room temperature, stirred for an additional 12 h, and diluted with EtOAc (10 mL). The mixture was washed with NaHSO₄ (20%, 2×10 mL), NaHCO₃ (aq. 10 mL), brine (10 mL), and dried over anhydrous Na₂SO₄. The crude mixture was purified by column chromatography on silica gel to afford the product **1a**-D as a white solid (1.71 g, 96% yield). ¹H NMR (CDCl₃, 400 MHz) δ : 7.56–7.54 (m, 1H), 7.46–7.38 (m, 2H), 7.27–7.24 (m, 1H), 6.64 (s, 1H), 3.07 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 133.76, 130.00, 129.11, 125.79, 122.39, 95.60, 40.15. HRMS (EI) ([M]⁺) Calcd. for C₉H₈DBr₂NO₂S: 353.8784, Found: 353.8788.

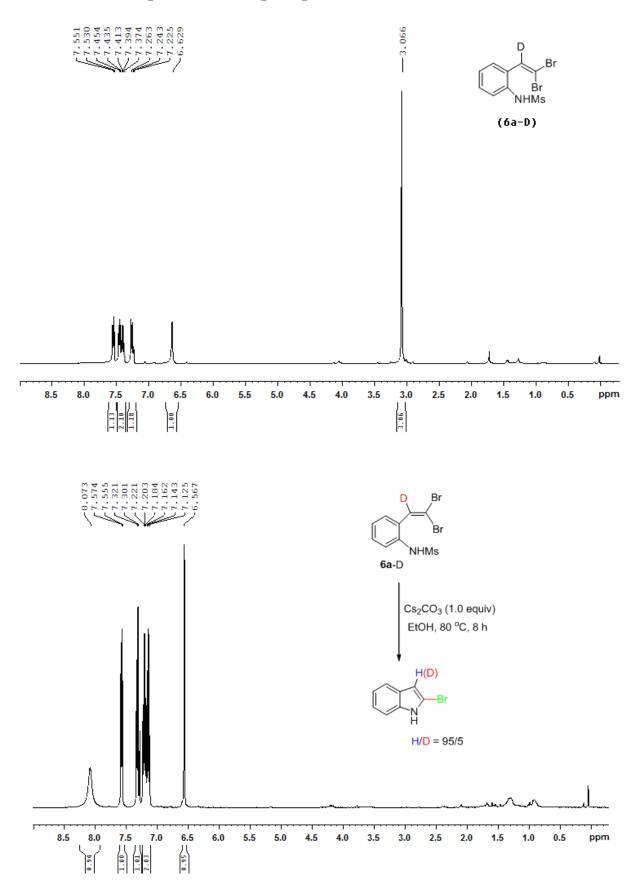
(2) Typical procedure for the preparation of 2-(gem-dibromovinyl)-N-methylsulfonylaniline

At 0 °C, to a solution of 4-methyl-2-nitrobenzaldehyde (1.65 g, 10 mmol) and CBr₄ (6.65 g, 20 mmol) in DCM (50 mL) was added dropwise a solution of PPh₃ (10.5 g, 40 mmol) in DCM (50 mL) by an addition funnel. The addition rate was controlled so that the internal temperature was below 5 °C. After addition (about 1 h), the mixture was stirred for another 2 hrs before

warmed to r. t., and stirred for an additional 3 h. The DCM was removed under vacuum, then EtOAc (200 mL) was added and stirred for 0.5 h, the mixture was filtered and washed with EtOAc until no product was found. Solvent was removed under reduced pressure, the residue was purified by flash chromatography using 10% EtOAc in hexanes. The product (I') was obtained as a light yellow solid (2.60 g, 81%).

I' (1.61 g, 5.0 mmol) and SnCl₂·H₂O (67.7 g, 25 mmol) were mixed in EtOH (95%, 50 mL). The mixture was refluxed at 100 °C for 2 h, and then cooled to r. t. After most of the ethanol was removed under vacuum, H₂O (50 mL) and EtOAc (100 mL) were added. To the resulting mixture, solid NaHCO₃ was added carefully until pH >10. The EtOAc layer was separated and the aqueous phase was extracted with EtOAc until it was free of the product. The combined organic solution was washed with brine and dried over Na₂SO₄. Solvent was removed under vacuum. The crude product (II') was resolved in DCM (20 mL), and pyridine (1.0 g, 12.5 mmol) was added. After the mixture was cooled to 0 °C, methylsulfonyl chloride (0.69 g, 6.0 mmol) was added, the mixture was stirred for 4 h before warmed to r. t., and stirred for an additional 5 h. After the reaction was completed, the mixture was washed with HCl (1.0 mol/L, 15 mL), The DCM layer was separated and the aqueous phase was extracted with DCM until it was free of the product. Solvent was removed and the product was further purified by flash chromatography using 25% EtOAc in hexanes. The product 6k was obtained as a white solid (1.06 g, 58% yield over 2 steps). H NMR (CDCl₃, 400 MHz): δ 7.50 (s, 1H), 7.40 (d, J = 8.0Hz, 1H), 7.25 (s, 1H), 7.19 (d, J = 8.4 Hz, 1H), 6.53 (s, 1H), 3.02 (s, 3H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 136.22, 133.62, 130.97, 130.58, 130.01, 123.66, 94.95, 39.98, 20.89. HRMS (EI) ([M]⁺) Calcd. for C₁₀H₁₁NO₂SBr₂: 366.8877, Found: 366.8875.

(3) Typical procedure for the synthesis of 2-bromoindole (8a) via Cs_2CO_3 -promoted intramolecular cyclization of 2-(gem-dibromovinyl)-N-methylsulfonylaniline (6a)


In air atmosphere, a 10 mL of sealable reaction tube with a Teflon-coated screw cap

equipped with a magnetic stir bar was charged with 2-(gem-dibromovinyl)-N-methylsulfonylaniline (**6a**, 0.50 mmol), Cs₂CO₃ (0.50 mmol) and EtOH (2.0 mL). The reaction vessel was placed in an oil bath. After the reaction was carried out at 80 °C for 8 h, it was cooled to room temperature, extracted twice with Et₂O. The organic layers were combined, dried over Na₂SO₄, and concentrated under reduced pressure to yield the crude product, which was further purified by flash chromatography on silica gel (eluant: hexane/ethyl acetate) to give the desired product 2-bromoindole (**8a**).

(4) Typical procedure for the synthesis of 2-bromo-N-methylsulfonylindole (9a) via Cs_2CO_3 -promoted intramolecular cyclization of 2-(gem-dibromovinyl)-N-methylsulfonylaniline (6a)

In air atmosphere, a 10 mL of sealable reaction tube with a Teflon-coated screw cap equipped with magnetic stir bar charged with a was 2-(gem-dibromovinyl)-N-methylsulfonylaniline (**6a**, 0.50 mmol), Cs₂CO₃ (0.25 mmol) and EtOH (2.0 mL). The reaction vessel was placed in an oil bath. After the reaction was carried out at 80 °C for 8 h, it was cooled to room temperature, extracted twice with Et₂O. The organic layers were combined, dried over Na₂SO₄, and concentrated under reduced pressure to yield the crude product, which was further purified by flash chromatography on silica gel (eluant: hexane/ethyl acetate) to give the desired product 2-bromo-N-methylsulfonylindole (9a).

3. The ¹H NMR spectra of isotope experiment

4. ICP-AES analysis of Cs₂CO₃ sample

Table S1. ICP-MS (Inductively Coupled Plasma Mass Spectroscopy) analysis of metal elements in Cs₂CO₃ sample

Comple	Element (µg/g, ppm)						
Sample	Ni	Co	Fe	Cu	Pd	Ru	Rh
Cs ₂ CO ₃ (99.995%) sample from Aldrich	ND	ND	ND	0.30	0.01	ND	ND

ND: Not detected.

中国科学技术大学理化科学实验中心

检测报告

报告编号:ICP-2012-100 报告日期:2012.07.20 样品名称:粉末 委托单位:淮北师范大学 送检方式:委托测试 送检日期:2012.07.16

	测 定 元 素 含 望(μg/g)			
样品编号	Cu	Pd		
Wang01	0.30	0.01		

说明: 1. 本报告涂改增删无效;

2. 本报告只对来样负责:

3. 如果客户对本报告有异议,请于报告发出之日起15日内提出异议。

注: 采用等离子体质谱仪测定 仪器型号: Xseries 2 生产商: Thermo Sciedtific(USA).

5. Characterization data for starting materials and all the products

6a-D: ¹H NMR (CDCl₃, 400 MHz) δ: 7.55–7.53 (m, 1H), 7.45–7.37 (m, 2H), 7.26–7.23 (m, 1H), 6.63 (s, 1H), 3.07 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 133.76, 130.00, 129.11, 125.79, 122.39, 95.60, 40.15. HRMS (EI) ([M]⁺) Calcd. for C₉H₈DBr₂NO₂S: 353.8784, Found: 353.8788.

6d: ¹H NMR (CDCl₃, 400 MHz) δ : 7.57 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 7.37–7.31 (m, 2H), 6.66 (s, 1H), 3.07 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 132.89, 132.88, 132.61, 131.80, 130.68, 123.71, 118.78, 97.16, 40.27. HRMS (EI) ([M]⁺) Calcd. for C₉H₈NO₂SBr₃: 430.7826, Found: 430.7829.

6h: ¹H NMR (CDCl₃, 400 MHz) δ : 7.74 (s, 1H), 7.36 (d, J = 5.2 Hz, 2H), 7.29 (d, J = 8.8 Hz, 1H), 6.59 (s, 1H), 3.12 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 135.01, 132.02, 131.16, 128.58, 127.14, 124.18, 123.64, 96.84, 40.45. HRMS (EI) ([M]⁺) Calcd. for C₉H₈NO₂SBr₃: 430.7826, Found: 430.7830.

6k: ¹H NMR (CDCl₃, 400 MHz) δ: 7.50 (s, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.19 (d, J = 8.4 Hz, 1H), 6.53 (s, 1H), 3.02 (s, 3H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 136.22, 133.62, 130.97, 130.58, 130.01, 123.66, 94.95, 39.98, 20.89. HRMS (EI) ([M]⁺) Calcd. for $C_{10}H_{11}NO_2SBr_2$: 366.8877, Found: 366.8875.

6l: ¹H NMR (CDCl₃, 400 MHz) δ : 7.62–7.58 (m, 3H), 7.53–7.50 (m, 3H), 7.00 (d, J = 8.4 Hz, 2H), 6.42 (s, 1H), 3.87 (s, 3H), 3.10 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 159.51, 138.62, 133.19, 132.09, 131.93, 129.57, 128.04, 128.02, 122.97, 114.39, 95.96, 55.39, 40.21. HRMS (EI) ([M]⁺) Calcd. for C₁₆H₁₅NO₃SBr₂: 458.9139, Found: 458.9136.

6m: ¹H NMR (CDCl₃, 400 MHz) δ : 7.53 (s, 1H), 7.44–7.38 (m, 5H), 7.36 (d, J = 6.8 Hz, 1H), 7.11 (s, 1H), 7.01 (d, J = 8.8 Hz, 1H), 6.19 (s, 1H), 5.09 (s, 2H), 3.00 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 157.32, 136.31, 133.44, 132.88, 128.71, 128.20, 127.44, 127.35, 126.13, 116.49, 115.71, 94.81, 70.41, 39.98. HRMS (EI) ([M]⁺) Calcd. for C₁₆H₁₅NO₃SBr₂: 458.9139, Found: 458.9142.

60: ¹H NMR (CDCl₃, 400 MHz) δ: 7.58 (s, 1H), 7.33–7.31 (m, 1H), 7.16–7.14 (m, 2H), 6.61 (s, 1H), 2.98 (s, 3H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 138.10, 135.52, 135.23, 131.65, 131.45, 127.87, 127.39, 92.55, 41.64, 18.88. HRMS (EI) ([M]⁺) Calcd. for C₁₀H₁₁NO₂SBr₂: 366.8877, Found: 366.8879.

6t: ¹H NMR (CDCl₃, 400 MHz) δ: 7.63 (d, J = 8.4 Hz, 1H), 7.38–7.34 (m, 1H), 7.21–7.18 (m, 1H), 7.12 (d, J = 7.2 Hz, 1H), 6.51 (s, 1H), 3.09 (s, 3H), 2.18 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 133.32, 132.25, 131.22, 129.50, 128.74, 125.13, 120.25, 119.85, 40.15, 22.51. HRMS (EI) ([M]⁺) Calcd. for C₁₀H₁₁Cl₂NO₂S: 278.9888, Found: 278.9885.

8a^[2]: ¹H NMR (CDCl₃, 400 MHz) δ : 8.10 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.21–7.18 (m, 1H), 7.15–7.12 (m, 1H), 6.56 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 136.36, 128.68, 122.22, 120.47, 119.61, 110.30, 108.65, 104.80.

8b: ¹H NMR (CDCl₃, 400 MHz) δ : 8.11 (s, 1H), 7.18 (m, 2H), 6.94–6.89 (m, 1H), 6.49 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 158.16 (J = 234.2 Hz), 132.96, 129.04 (J = 10.4 Hz), 111.02(J = 9.4 Hz), 110.60 (J = 26.2 Hz), 110.25, 105.01 (J = 4.5 Hz), 104.72 (J = 23.8 Hz). HRMS (EI) ([M]⁺) Calcd. for C₈H₅NFBr: 212.9589, Found: 212.9593.

8c: ¹H NMR (CDCl₃, 400 MHz) δ : 8.18 (s, 1H), 7.51 (d, J = 1.6 Hz, 1H), 7.23–7.21 (m, 1H), 7.15–7.13 (m, 1H), 6.49 (br, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 134.71, 129.65, 126.24, 122.56, 119.05, 111.27, 110.09, 104.56. HRMS (EI) ([M]⁺) Calcd. for C₈H₅NClBr: 228.9294, Found: 228.9297.

8d^[2]: ¹H NMR (CDCl₃, 400 MHz) δ : 8.24 (s, 1H), 7.67 (d, J = 1.6 Hz, 1H), 7.28–7.26 (m, 1H), 7.17 (d, J = 8.4 Hz, 1H), 6.49 (d, J = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 135.01, 130.30, 125.12, 122.12, 113.77, 111.75, 110.06, 104.43.

8e^[2]: ¹H NMR (CDCl₃, 400 MHz) δ: 8.36 (s, 1H), 7.87 (s, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 6.47 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 135.46, 131.09, 130.57, 128.33,

112.20, 109.71, 104.07, 84.01.

8f^[2]: ¹H NMR (CDCl₃, 400 MHz) δ : 8.14 (s, 1H), 7.43 (dd, J = 2.4, 8.4 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.90–6.86 (m, 1H), 6.50 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 159.80 (d, J = 237.3 Hz), 136.18 (d, J = 12.4 Hz), 125.25 (d, J = 1.2 Hz), 120.42 (d, J = 9.8 Hz), 109.24 (d, J = 24.2 Hz), 108.27 (d, J = 3.2 Hz), 104.84, 96.97 (d, J = 26.4 Hz).

8g: ¹H NMR (CDCl₃, 400 MHz) δ : 8.07 (s, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.18 (s, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.42 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 136.61, 128.19, 127.26, 121.29, 120.50, 110.34, 109.32, 104.96. HRMS (EI) ([M]⁺) Calcd. for C₈H₅NClBr: 228.9294, Found: 228.9297.

8h: ¹H NMR (CDCl₃, 400 MHz) δ : 8.05 (s, 1H), 7.36 (s, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.42 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 137.02, 127.57, 123.87, 120.82, 115.76, 113.23, 109.31, 105.03. HRMS (EI) ([M]⁺) Calcd. for C₈H₅NBr₂: 272.8789, Found: 272.8792.

$$F$$
 N
 H

8i: ¹H NMR (CDCl₃, 400 MHz) δ : 8.19 (s, 1H), 7.09–7.06 (m, 2H), 6.80–6.76 (m, 1H), 6.62 (d, J = 1.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 159.80 (d, J = 237.3 Hz), 136.18 (d, J = 12.4 Hz), 125.25 (d, J = 1.2 Hz), 120.42 (d, J = 9.9 Hz), 109.24 (d, J = 24.2 Hz), 108.27 (d, J = 3.2 Hz), 104.84, 96.97 (d, J = 26.3 Hz). HRMS (EI) ([M]⁺) Calcd. for C₈H₅NFBr: 212.9589, Found: 212.9592.

8j: ¹H NMR (CDCl₃, 400 MHz) δ : 8.31 (s, 1H), 7.16 (d, J = 7.6 Hz, 1H), 7.10 (dd, J = 1.2, 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 6.64 (d, J = 1.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 136.92, 127.57, 124.77, 122.79, 120.21, 109.44, 108.90, 103.48. HRMS (EI) ([M]⁺) Calcd. for C₈H₅NClBr: 228.9294, Found: 228.9296.

$$H_3C$$
 N
 H

8k: ¹H NMR (CDCl₃, 400 MHz) δ : 7.91 (s, 1H), 7.30 (s, 1H), 7.14 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.43 (s, 1H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 134.68, 129.73, 128.92, 123.74, 119.27, 109.94, 108.50, 104.35, 21.37. HRMS (EI) ([M]⁺) Calcd. for C₉H₈NBr: 208.9840, Found: 208.9842.

81: ¹H NMR (CDCl₃, 400 MHz) δ : 8.09 (s, 1H), 7.68 (s, 1H), 7.54 (d, J = 7.2 Hz, 2H), 7.38–7.31 (m, 2H), 6.98 (d, J = 7.2 Hz, 2H), 6.56 (s, 1H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 158.64, 135.61, 134.74, 133.77, 129.25, 128.30, 121.86, 117.62, 114.15, 110.46, 109.07, 105.12, 55.36. HRMS (EI) ([M]⁺) Calcd. for C₁₅H₁₂NOBr: 301.0102, Found: 301.0106.

8m: ¹H NMR (CDCl₃, 400 MHz) δ : 7.86 (s, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.31–7.27 (m, 2H), 7.23 (d, J = 6.8 Hz, 1H), 7.05 (d, J = 8.8 Hz, 1H), 6.97 (s, 1H), 6.80 (d, J = 8.8 Hz, 1H), 6.34 (s, 1H), 4.98 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 153.73, 137.51, 131.79, 129.20, 128.59, 127.89, 127.60, 113.08, 111.17, 109.02, 104.75, 103.25, 70.88. HRMS (EI) ([M]⁺) Calcd. for C₁₅H₁₂NOBr: 301.0102, Found: 301.0103.

8n: ¹H NMR (CDCl₃, 400 MHz) δ : 8.41 (s, 1H), 7.45 (s, 1H), 7.30–7.27 (m, 1H), 7.09 (d, J = 8.8 Hz, 1H), 6.55 (s, 1H), 3.15 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 143.46, 134.98, 128.98, 116.49, 112.63, 111.34, 110.84, 105.30, 36.98. HRMS (EI) ([M]⁺) Calcd. for C₁₆H₁₅NO₃SBr₂: 458.9139, Found: 458.9142.

80: ¹H NMR (CDCl₃, 400 MHz) δ : 7.99 (s, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.04–7.00 (m, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.52 (s, 1H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 136.17, 128.36, 122.89, 120.73, 119.61, 117.41, 108.36, 105.40, 16.55. HRMS (EI) ([M]⁺) Calcd. for C₉H₈NBr: 208.9840, Found: 208.9841.

$$0 \longrightarrow \mathbb{R}^{N}$$

8p: ¹H NMR (CDCl₃, 400 MHz) δ : 7.99 (s, 1H), 6.93 (s, 1H), 6.78 (s, 1H), 6.40 (d, J = 1.6 Hz, 1H), 5.94 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 144.92, 143.32, 131.19, 122.59, 105.32, 105.00, 100.64, 98.48, 91.59. HRMS (EI) ([M]⁺) Calcd. for C₉H₆NO₂Br: 238.9582, Found: 238.9587.

8q: ¹H NMR (CDCl₃, 400 MHz) δ : 9.09 (s, 1H), 8.03 (s, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 6.58 (s, 1H), 2.66 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 198.53, 136.07, 132.60, 131.40, 120.94, 119.22, 113.31, 111.24, 105.22, 26.79. HRMS (EI) ([M]⁺) Calcd. for C₁₀H₈NOBr: 236.9789, Found: 236.9794.

8**r**^[2]: ¹H NMR (CDCl₃, 400 MHz) δ: 8.86 (s, 1H), 8.13 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 6.59 (s, 1H), 3.97 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 168.14, 135.78, 132.37, 123.70, 121.51, 119.21, 112.69, 105.23, 52.19.

8s^[3]: ¹H NMR (CDCl₃, 400 MHz) δ : 7.91 (s, 1H), 7.50 (d, J = 0.8 Hz, 1H), 7.23–7.11 (m, 3H), 6.39 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ : 135.00, 128.16, 123.35, 122.29, 120.63, 119.89, 110.43, 100.79.

A: ¹H NMR (CDCl₃, 400 MHz) δ: 8.13 (d, J = 8.4 Hz, 1H), 7.39 (dd, J = 1.6, 8.4 Hz, 1H), 7.35–7.30 (m, 1H), 7.13 (s, 1H), 6.98–6.94 (m, 1H), 1.56 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 152.35, 140.27, 132.41, 129.96, 122.09, 117.85, 110.65, 81.01, 75.93, 56.13, 28.29. HRMS (EI) ([M]⁺) Calcd. for C₁₃H₁₄NO₂Br: 295.0208, Found: 295.0206.

9a:^[4] Colorless oil. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.08$ (d, J = 8.0 Hz, 1H), 7.50 (s, 1H), 7.33–7.28 (m, 2H), 6.83 (d, J = 6 .0 Hz, 1H), 3.19 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 137.24$, 129.40, 124.97, 124.07, 120.13, 114.76, 114.62, 109.45, 41.78.

9b:^[4] White solid, m.p. 75–77 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.06-8.02$ (m, 1H), 7.18–7.16 (m, 1H), 7.07–7.03 (m, 1H), 6.82 (s, 1H), 3.22 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): δ

= 159.8 (d, J = 240.3 Hz), 133.5 (d, J = 1.3 Hz), 130.2 (d, J = 10.1 Hz), 116.0 (d, J = 9.1 Hz), 114.2 (d, J = 3.9 Hz), 112.8 (d, J = 25.0 Hz), 111.1, 105.6 (d, J = 24.2 Hz), 41.8.

9c:^[4] White solid, m.p. 116–118 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.01$ (d, J = 8.8 Hz, 1H), 7.48 (d, J = 1.2 Hz, 1H), 7.28–7.26 (m, 1H), 6.80 (s, 1H), 3.23 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 135.48$, 130.39, 129.89, 125.10, 119.59, 115.82, 113.67 110.90, 42.04.

9d: White solid, m.p. 132–134 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 7.95$ (d, J = 9.2 Hz, 1H), 7.63 (s, 1H), 7.40 (d, J = 8.8 Hz, 1H), 6.79 (s, 1H), 3.23 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 135.83$, 130.86, 127.76, 122.64, 117.51, 116.14, 113.52, 110.79, 42.08. HRMS (EI) ([M]⁺): calcd for C₉H₇NO₂Br₂S, 350.8564; found, 350.8566.

9e: White solid, m.p. 110–112 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 7.85$ (d, J = 7.2 Hz, 2H), 7.60–7.58 (m, 1H), 6.78 (s, 1H), 3.23 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 136.45$, 133.40, 131.40, 128.79, 116.47, 113.24, 110.46, 88.20, 42.07. HRMS (EI) ([M]⁺): calcd for C₉H₇NO₂SBrI, 398.8426; found, 398.8423.

9f:^[4] White solid, m.p. 97–99 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 7.84$ (d, J = 10.4 Hz, 1H), 7.45–7.42 (m, 1H), 7.07–7.02 (m, 1H), 6.82 (s, 1H), 3.25 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 160.84$ (d, J = 241.1 Hz), 137.12 (d, J = 12.7 Hz), 125.59 (d, J = 1.6 Hz), 120.78 (d, J = 9.7 Hz), 114.13 (d, J = 1.2 Hz), 112.52 (d, J = 24.1 Hz), 108.93 (d, J = 3.8 Hz), 102.39 (d, J = 29.6

Hz), 42.06.

9g:^[4] White solid, m.p. 137–139 °C. ¹H NMR (400 Hz, CDCl₃): δ = 8.13 (s, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 7.2 Hz, 1H), 6.82 (s, 1H), 3.26 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): δ = 137.24, 131.08, 127.75, 124.73, 120.78, 114.96, 114.06, 109.88, 42.16.

9h: White solid, m.p. 123–125 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.27$ (s, 1H), 7.41–7.35 (m, 2H), 6.81 (s, 1H), 3.25 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 137.53$, 128.10, 127.40, 121.11, 118.75, 117.74, 114.10, 109.92, 42.20. HRMS (EI) ([M]⁺): calcd for C₉H₇NO₂SBr, 350.8564; found, 350.8561.

9i: White solid, m.p. 104-106 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 7.87$ (d, J = 8.8 Hz, 1H), 7.28–7.22 (m, 1H), 6.99–6.95 (m, 2H), 3.25 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 154.55$ (d, J = 248.1 Hz), 139.02 (d, J = 8.8 Hz), 125.61 (d, J = 7.5 Hz), 118.58 (d, J = 22.4 Hz), 110.80 (d, J = 4.1 Hz), 109.78, 109.31 (d, J = 2.3 Hz), 109.16, 42.07. HRMS (EI) ([M]⁺): calcd for C₉H₇NO₂SFBr, 290.9365; found, 290.9359.

9j:^[4] White solid, m.p. 109–111 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.00$ (d, J = 7.6 Hz, 1H), 7.29–7.22 (m, 2H), 6.99 (d, J = 1.2 Hz, 1H), 3.25 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 137.66$, 128.21, 125.56, 125.25, 123.80, 113.20, 112.51, 110.28, 42.16.

9k: White solid, m.p. 107-109 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 7.95$ (d, J = 8.8 Hz, 1H), 7.29 (s, 1H), 7.14 (d, J = 8.8 Hz, 1H), 6.77 (s, 1H), 3.16 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 135.51$, 133.78, 129.63, 126.32, 119.95, 114.53, 114.47, 109.36, 41.47, 21.17. HRMS (EI) ([M]⁺): calcd for C₁₀H₁₀NO₂SBr: 286.9616, found: 286.9618.

91: White solid, m.p. 153–155 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.11$ (d, J = 8.0 Hz, 1H), 7.65 (s, 1H), 7.56–7.50 (m, 3H), 7.00 (d, J = 8.0 Hz, 2H), 6.88 (s, 1H), 3.87 (s, 3H), 3.22 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 159.19$, 137.16, 136.26, 133.29, 129.93, 128.31, 124.10, 117.85, 114.97, 114.81, 114.32, 109.85, 55.39, 41.73. HRMS (EI) ([M]⁺): calcd for C₁₆H₁₄NO₃SBr, 378.9878; found, 378.9879.

9m: White solid, m.p. 124–126 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 7.98$ (d, J = 8.8 Hz, 1H), 7.47 (d, J = 7.2 Hz, 2H), 7.43–7.39 (t, J = 7.2 Hz, 2H), 7.37–7.33 (t, J = 7.2 Hz, 1H), 7.02 (d, J = 9.2 Hz, 2H), 6.77 (s, 1H), 5.11 (s, 2H), 3.15 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 155.88$, 136.87, 132.03, 130.31, 128.65, 128.06, 127.49, 115.82, 114.67, 114.48, 109.95, 103.85, 70.52, 41.44. HRMS (EI) ([M]⁺): calcd for C₁₆H₁₄NO₃SBr, 378.9878; found, 378.9883.

9n: White solid, m.p. 167–168 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.14$ (d, J = 9.2 Hz, 1H), 7.47 (d, J = 1.2 Hz, 1H), 7.24–7.21 (dd, $J_I = 9.2$ Hz, $J_2 = 2.0$ Hz, 1H), 6.87 (s, 1H), 3.27 (s, 3H), 3.19 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 145.51$, 135.56, 130.10, 118.78, 116.02, 114.06,

113.35, 111.48, 42.23, 37.43. HRMS (EI) ($[M]^+$): calcd for $C_{10}H_{10}NO_5S_2Br$, 366.9184; found, 366.9188.

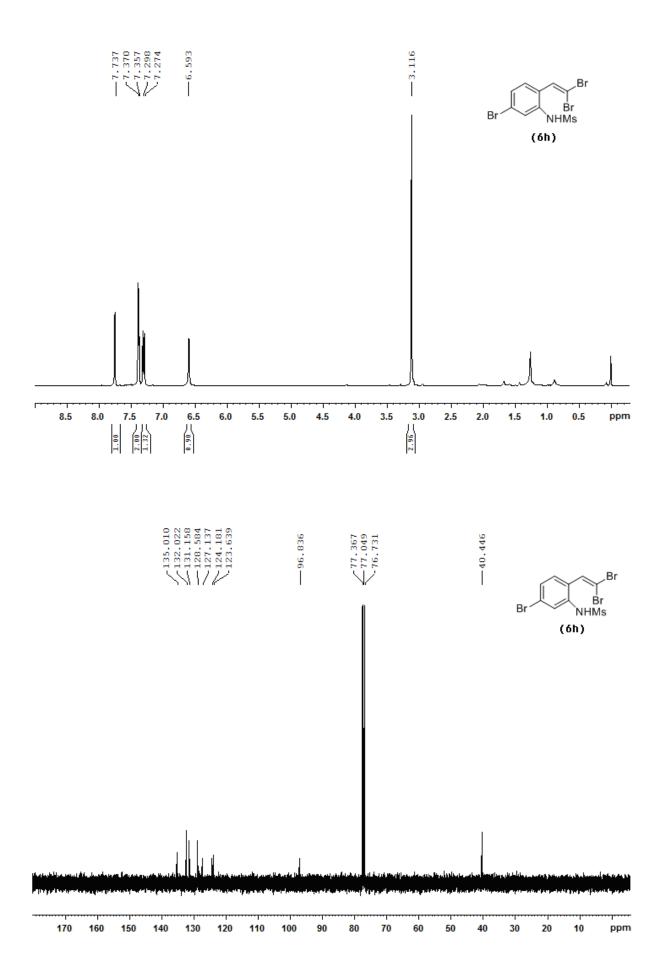
90: ¹H NMR (CDCl₃, 400 MHz) δ : 7.93 (s, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.13–7.02 (m, 1H), 6.91 (d, J = 7.6 Hz, 1H), 3.49 (s, 3H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 136.57, 128.41, 122.19, 120.90, 119.31, 117.21, 111.16, 104.42, 41.37, 16.95. HRMS (EI) ([M]⁺): calcd for C₁₀H₁₀NO₂SBr: 286.9616, found: 286.9621.

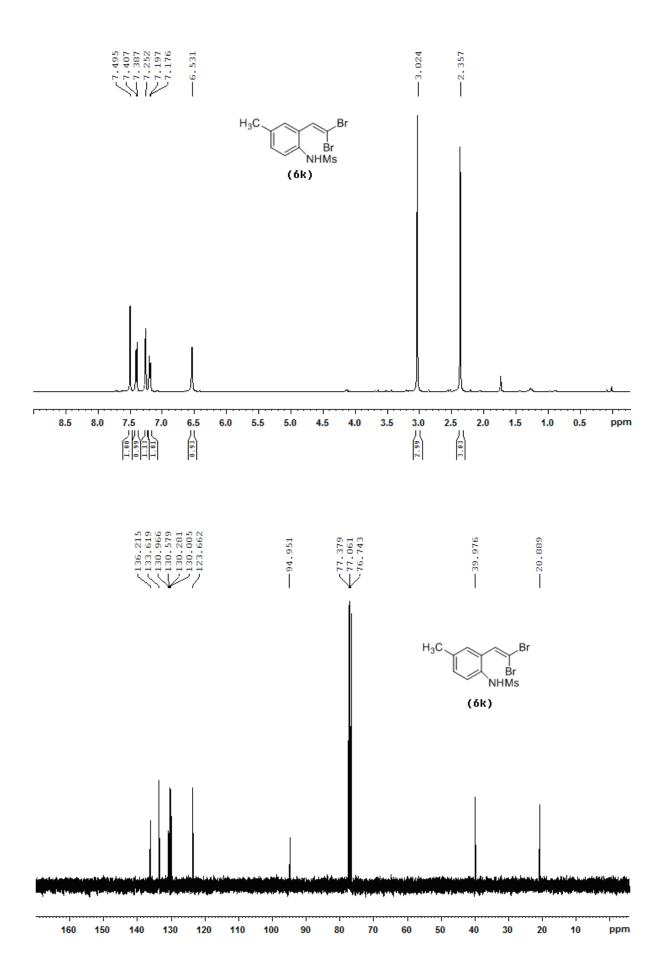
9p:^[4] White solid. ¹H NMR (400 Hz, CDCl₃): $\delta = 7.61$ (s, 1H), 6.86 (s, 1H), 6.70 (s, 1H), 6.00 (s, 2H), 3.16 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 146.69$, 145.41, 132.02, 123.64, 114.78, 106.41, 101.41, 98.79, 96.82, 41.51.

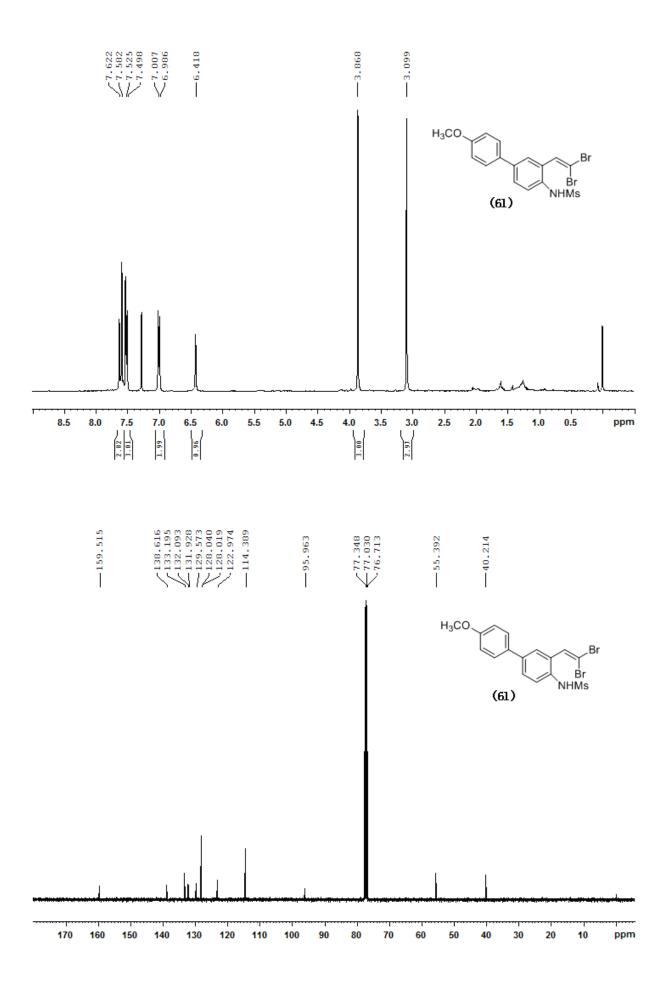
$$H_3C$$
 N
 Ms

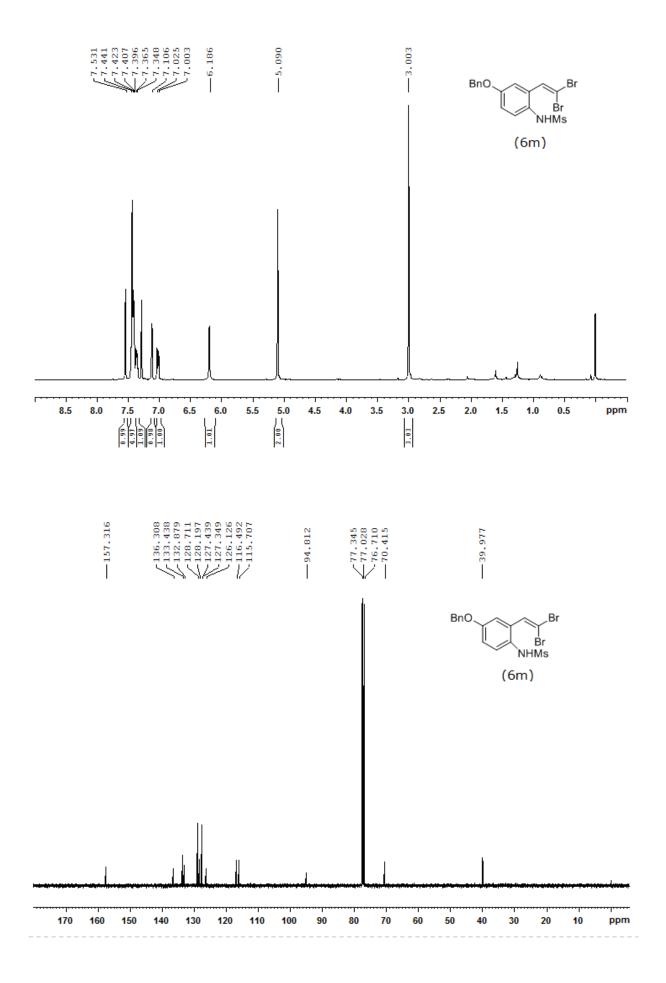
9q: White solid. ¹H NMR (400 Hz, CDCl₃): δ = 8.71 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 6.90 (s, 1H), 3.30 (s, 3H), 2.68 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): δ = 197.49, 136.78, 133.91, 132.85, 123.85, 119.98, 115.46, 114.20, 113.02, 42.35, 26.72. HRMS (EI) ([M]⁺): calcd for C₁₁H₁₀NO₃SBr, 314.9565; found, 314.9564.

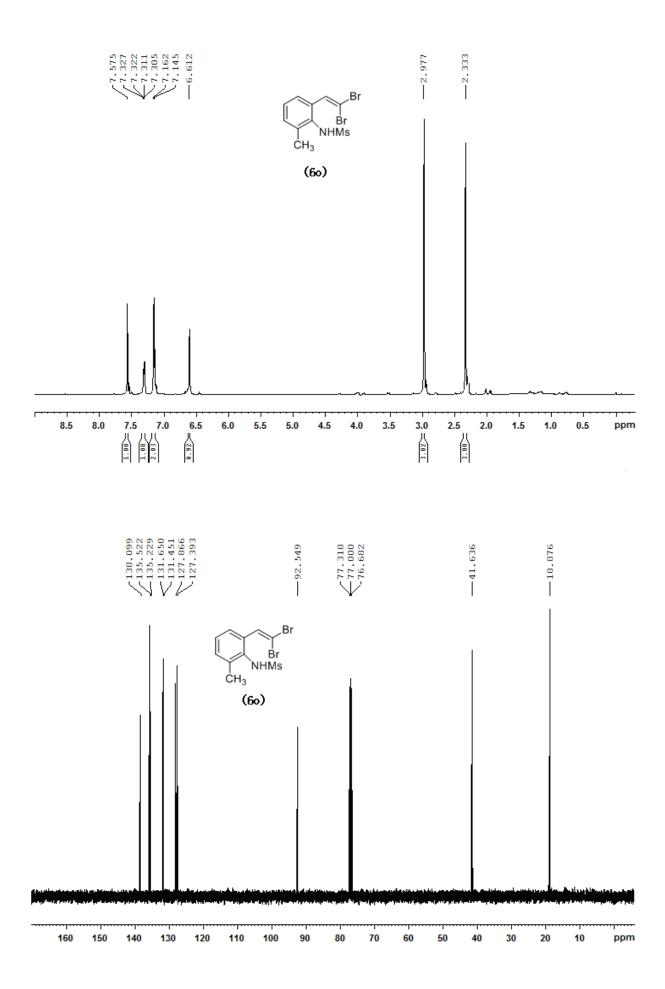

9r:^[4] White solid, m.p. 158–160 °C. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.77$ (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 6.89 (s, 1H), 3.95 (s, 3H) 3.29 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 167.02$, 136.56, 132.79, 126.68, 125.19, 119.79, 116.31, 114.19, 112.77, 52.28, 42.28.

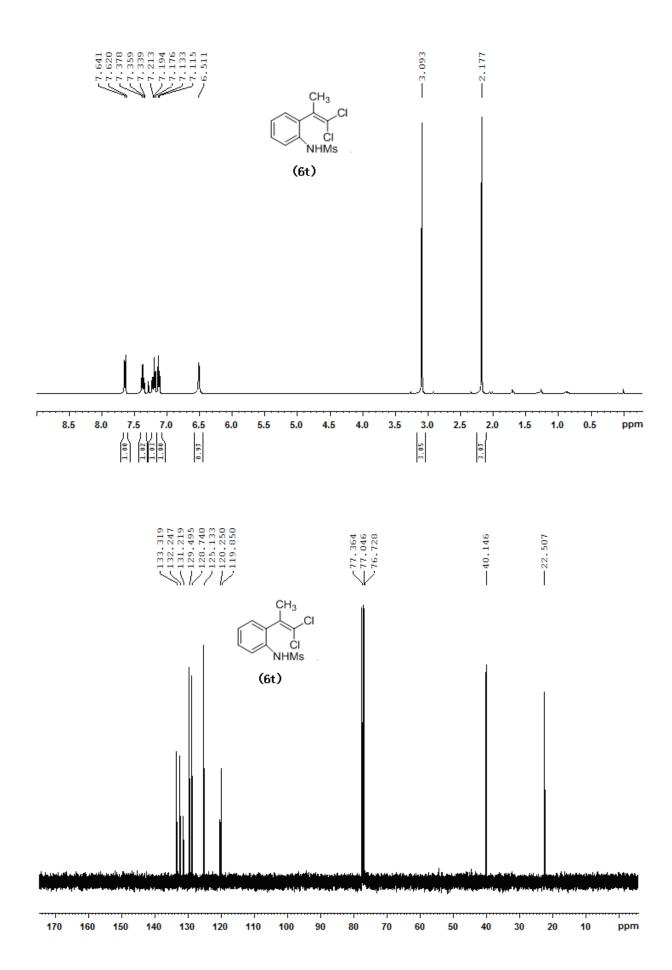

9s: Colorless oil. ¹H NMR (400 Hz, CDCl₃): $\delta = 8.07$ (d, J = 8.0 Hz, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.36–7.27 (m, 2H), 6.70 (s, 1H), 3.22 (s, 3H); ¹³C NMR (100 Hz, CDCl₃): $\delta = 136.25$, 128.20, 124.95, 124.26, 124.13, 120.24, 114.54, 109.75, 41.77. HRMS (EI) ([M]⁺): calcd for C₉H₈NO₂SCl, 228.9964; found, 228.9965.

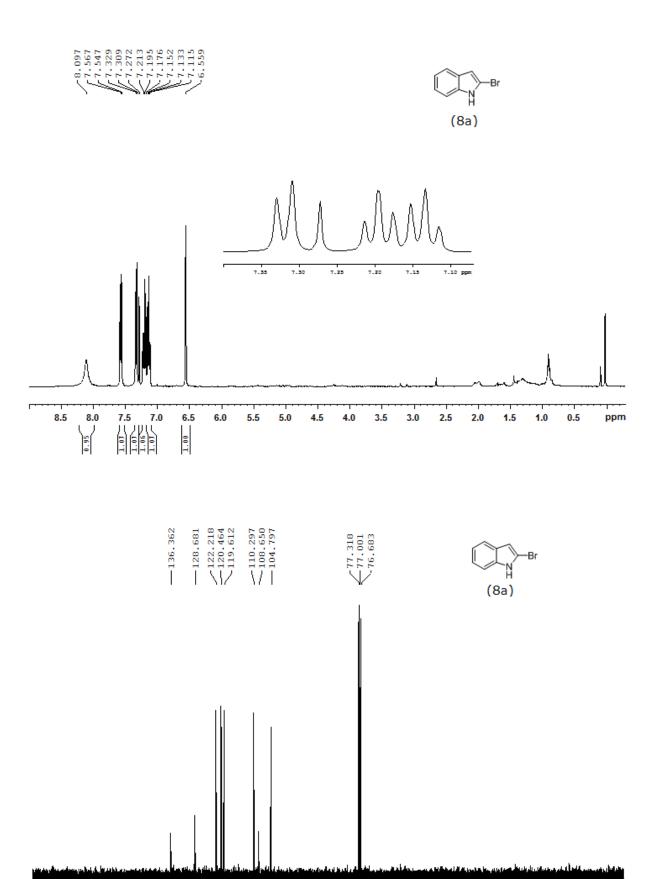

10a^[1]: ¹H NMR (CDCl₃, 400 MHz) δ : 8.33 (s, 1H), 7.49–7.46 (m, 3H), 7.42 (d, J = 8.0 Hz, 2H), 7.38–7.34 (m, 1H), 7.27–7.23 (m, 2H), 7.19–7.16 (m, 1H), 6.87 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 137.92, 136.86, 132.41, 129.31, 129.04, 127.73, 125.19, 122.38, 120.70, 120.31, 110.94, 100.03.

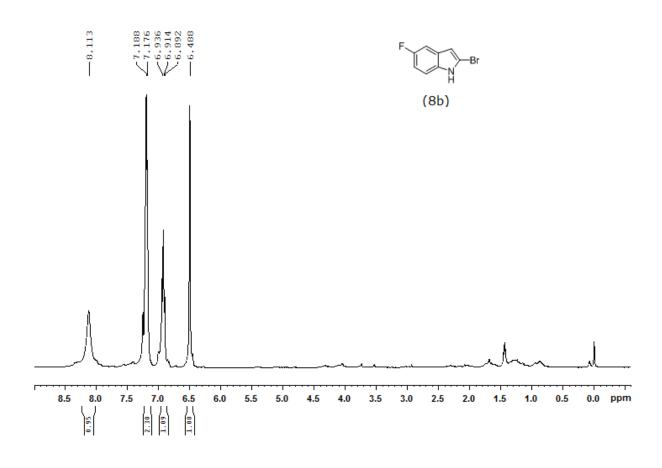

6. ¹H and ¹³C NMR spectra of compounds

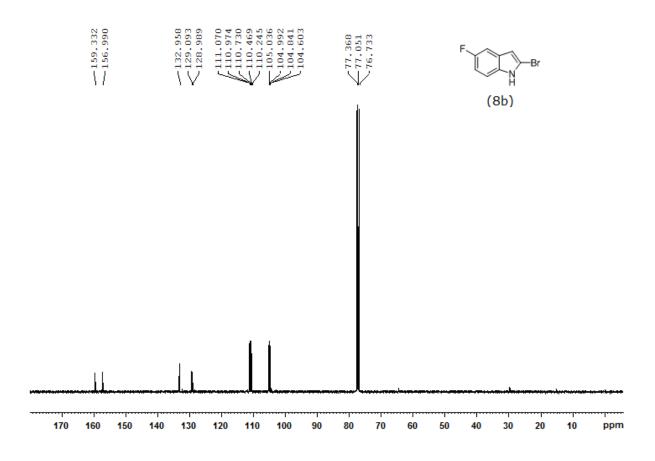


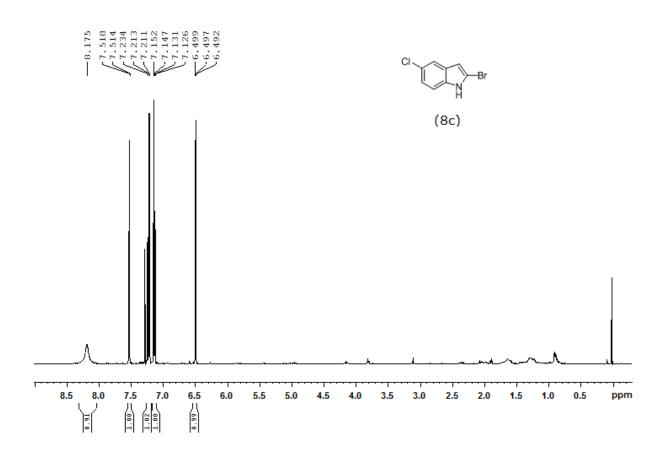


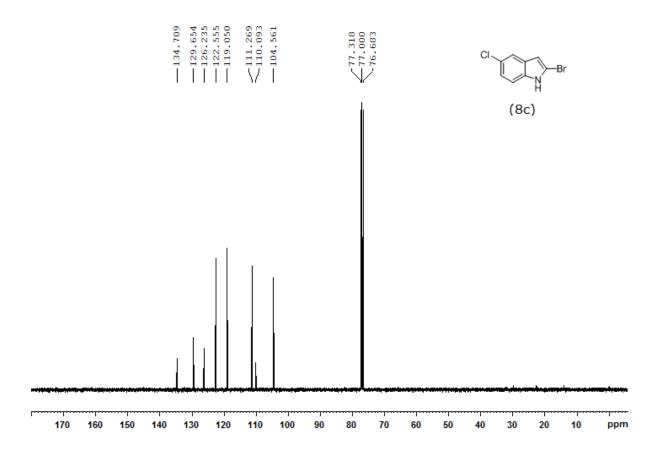




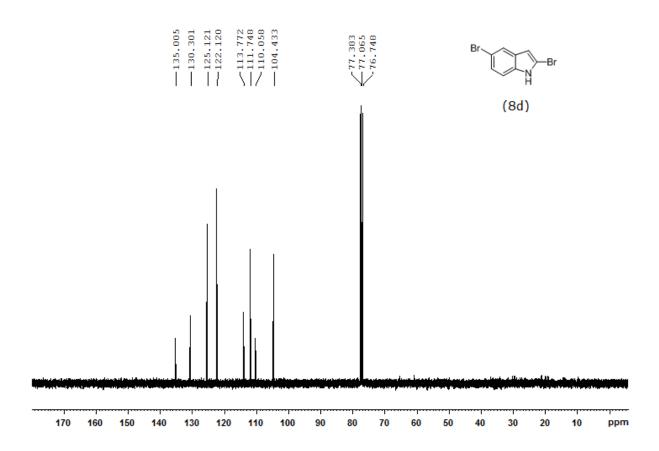


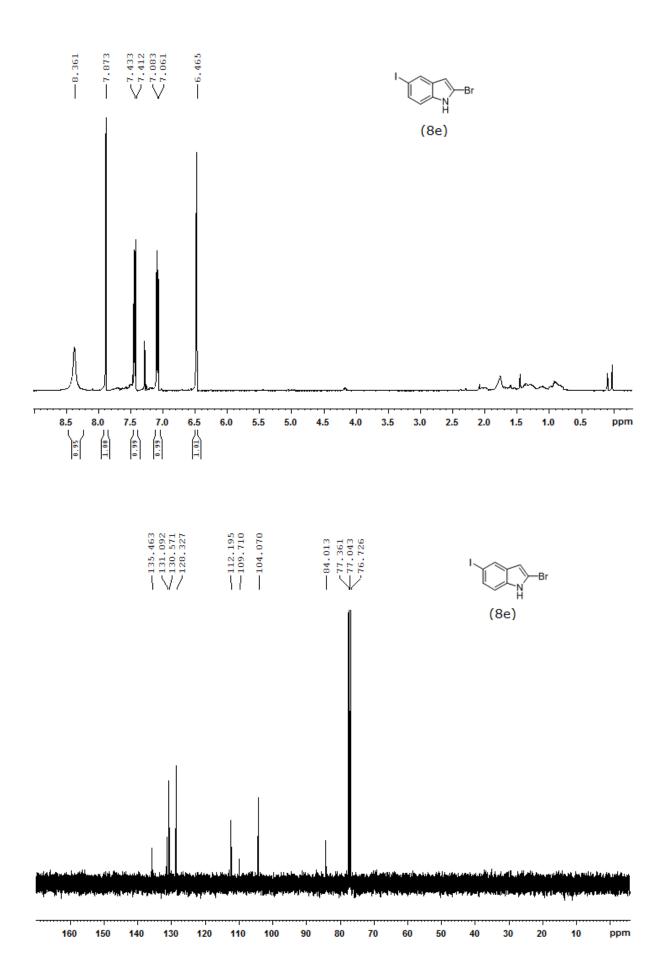


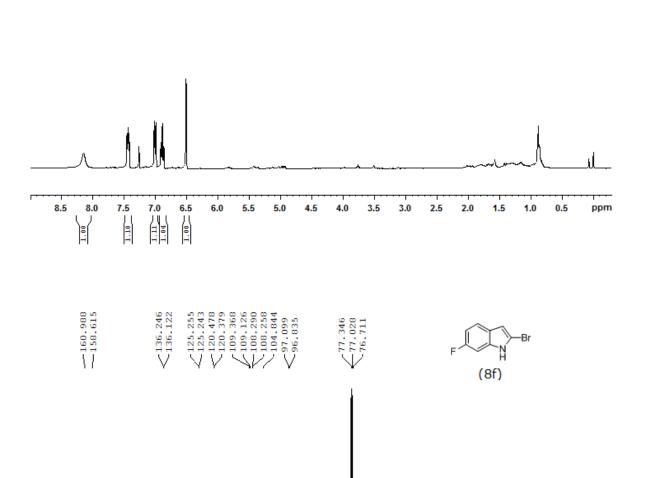


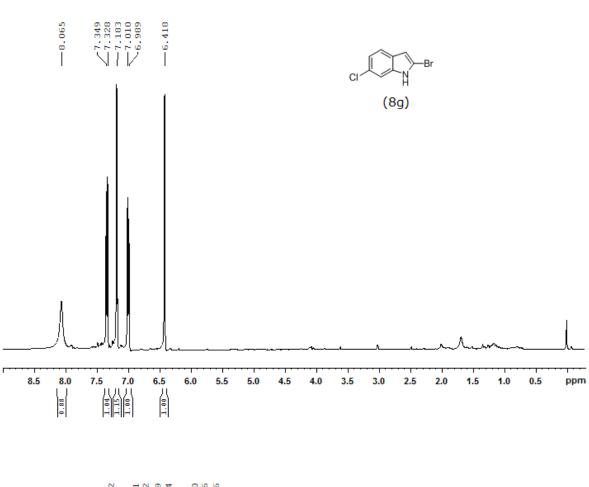


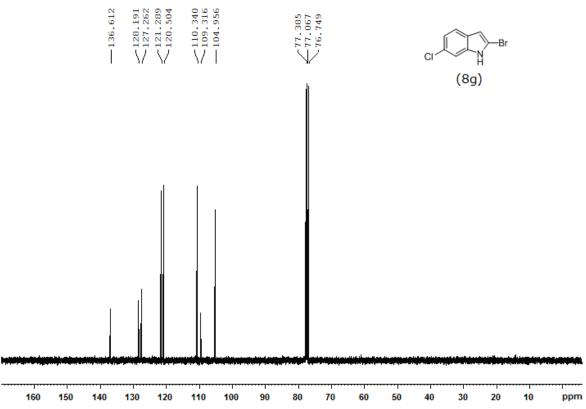
ppm

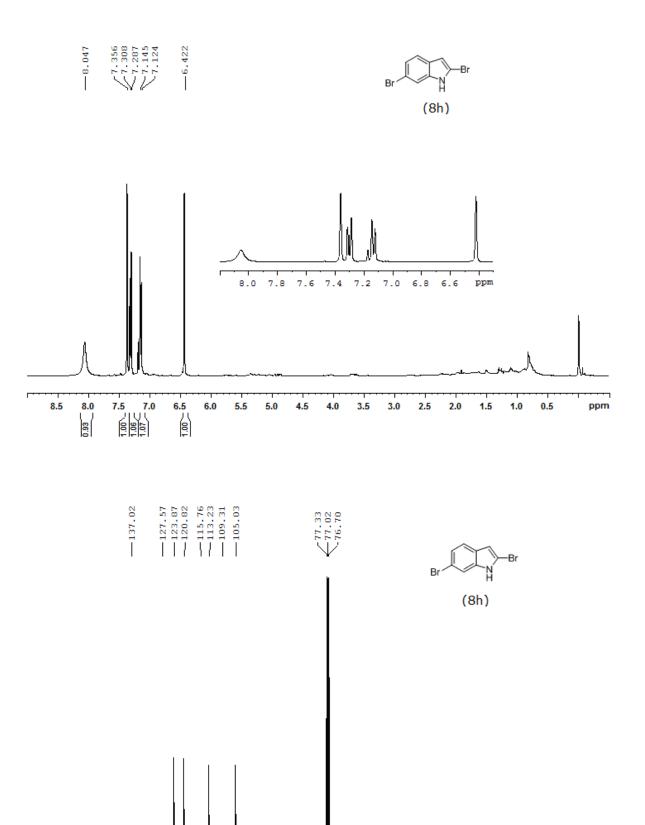


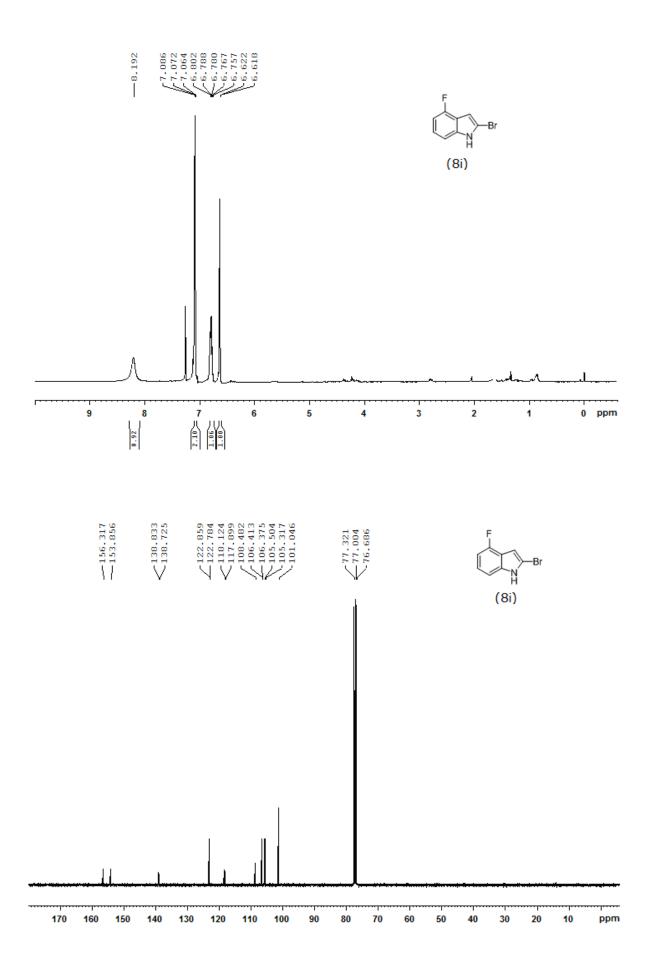


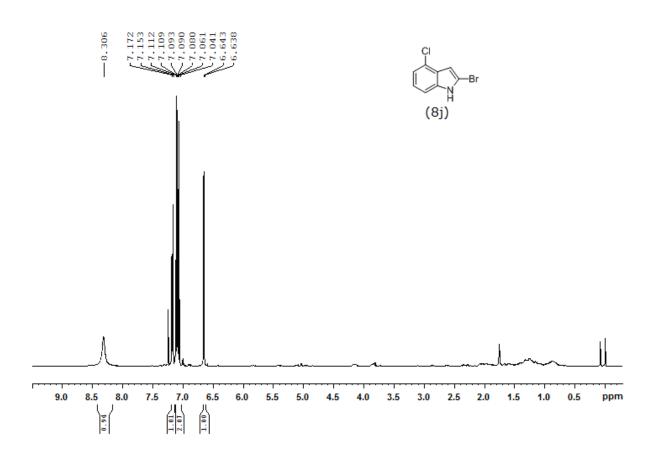


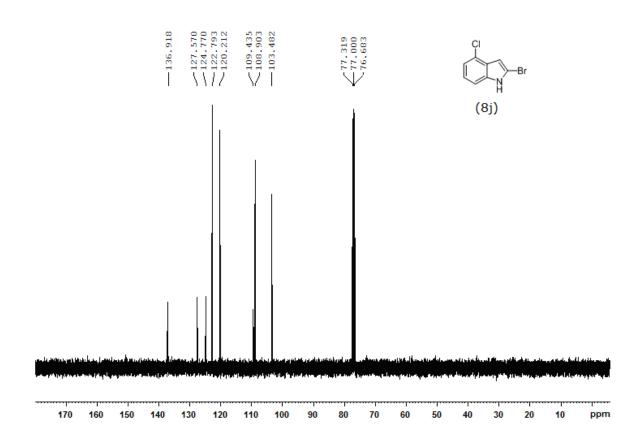


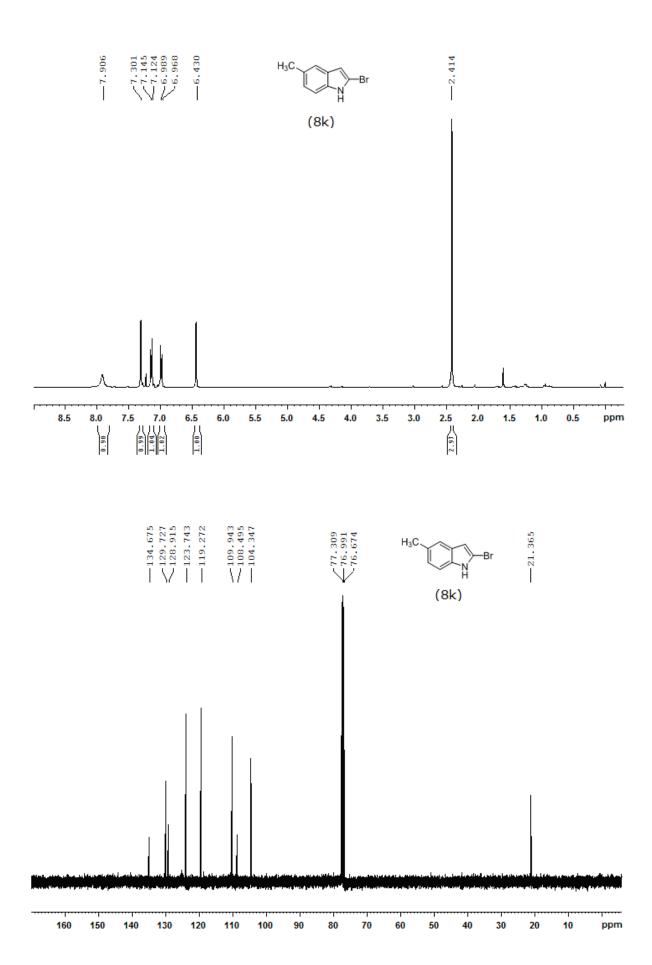


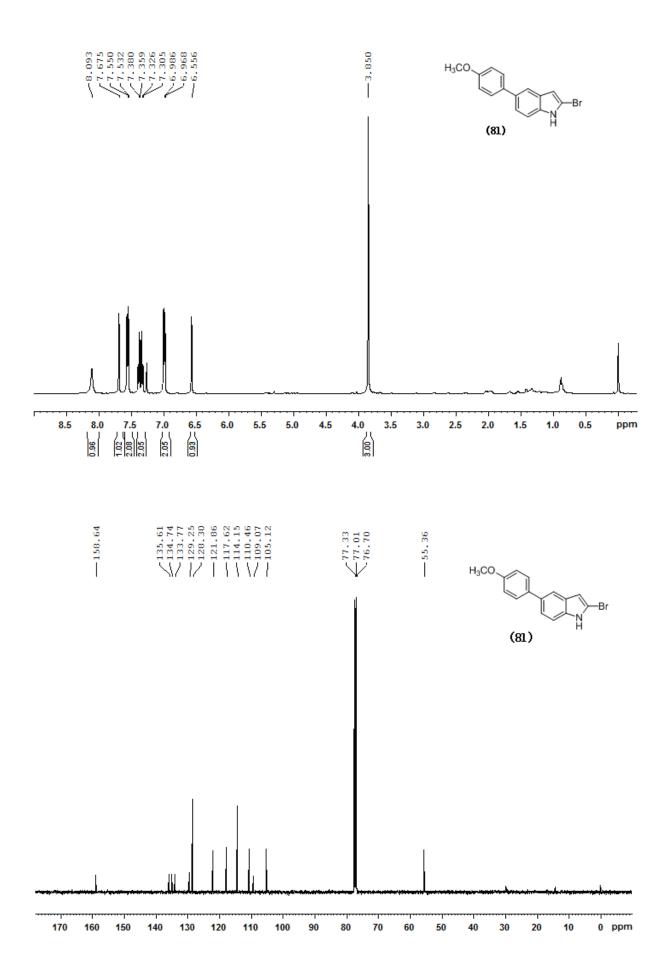


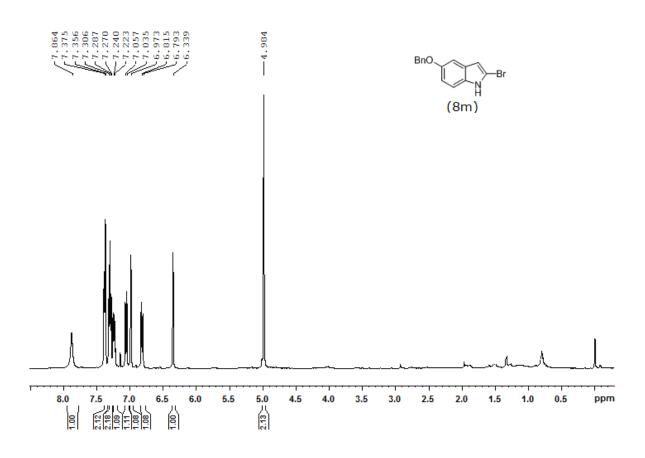


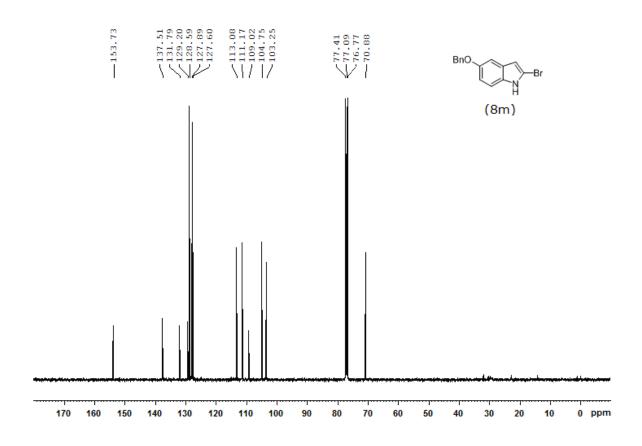


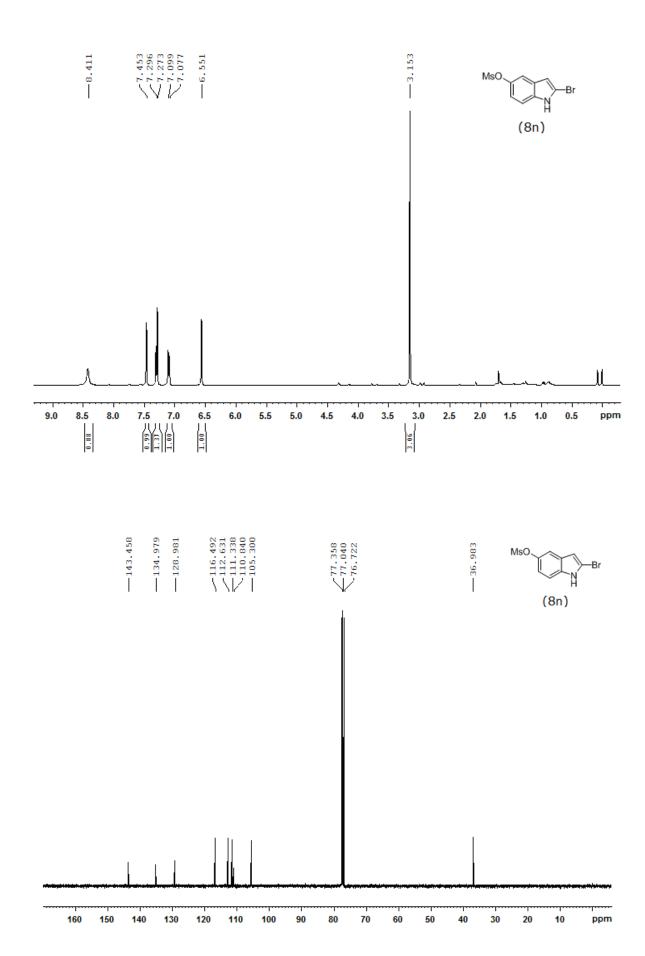


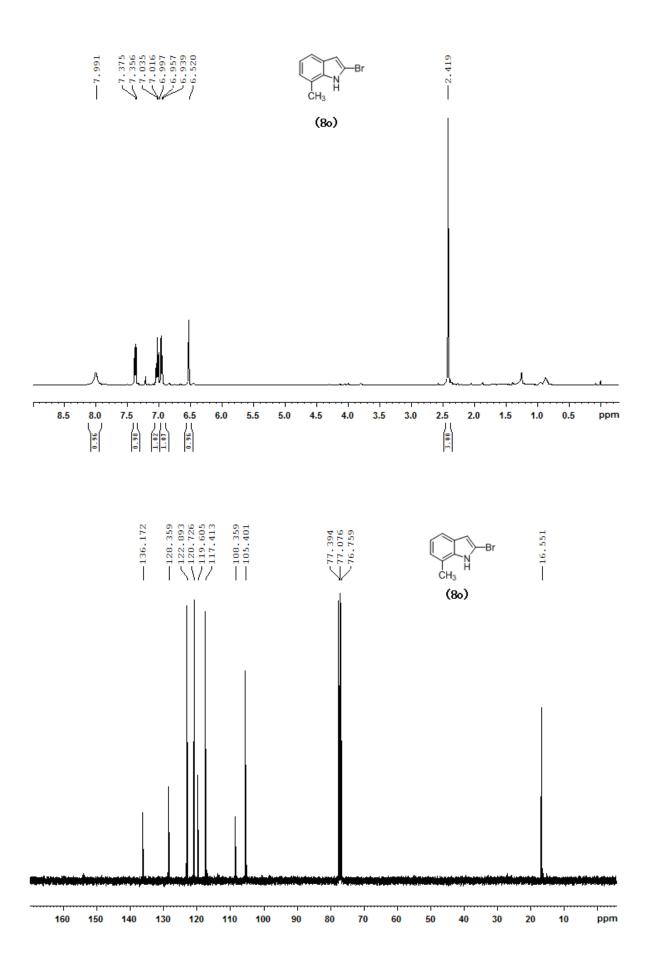


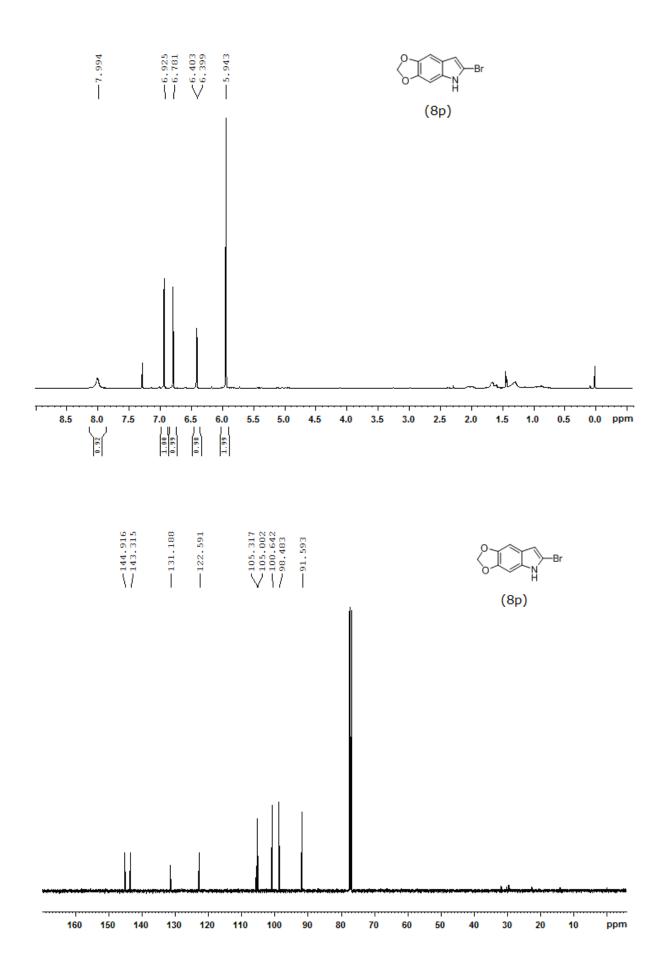

0 ppm

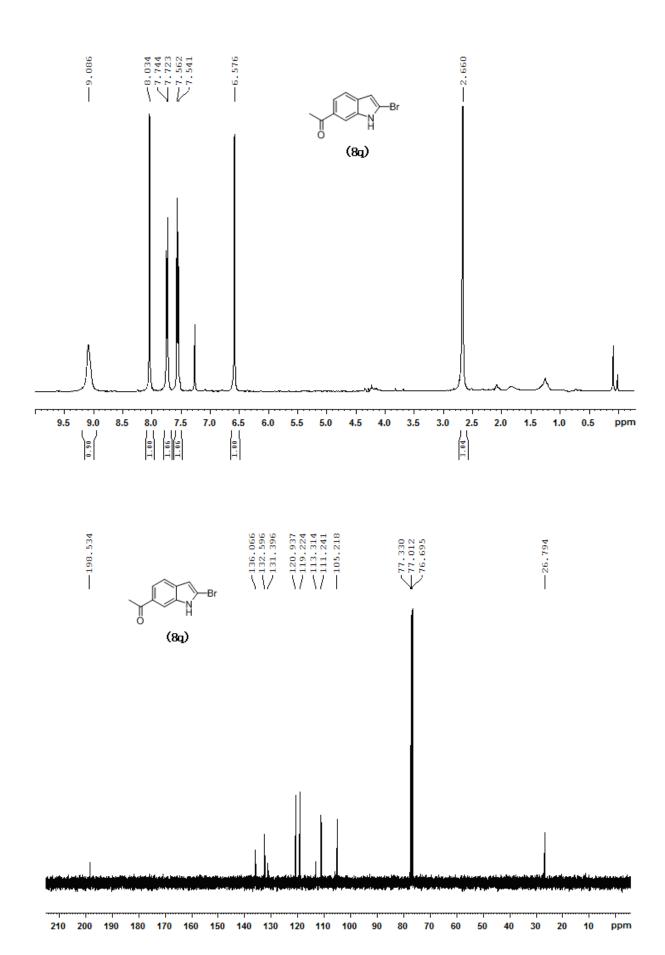


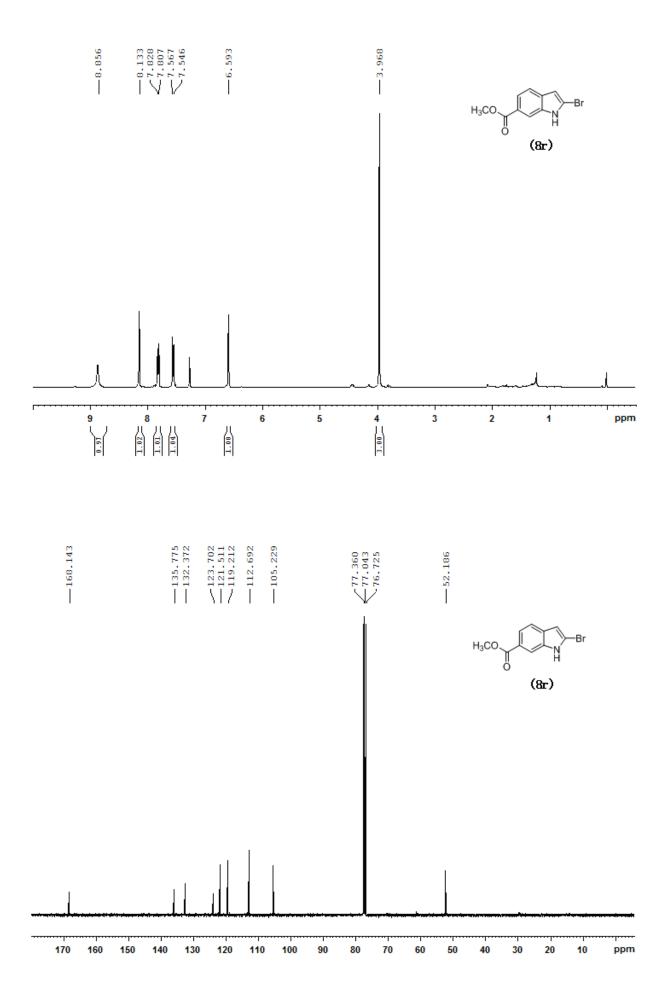


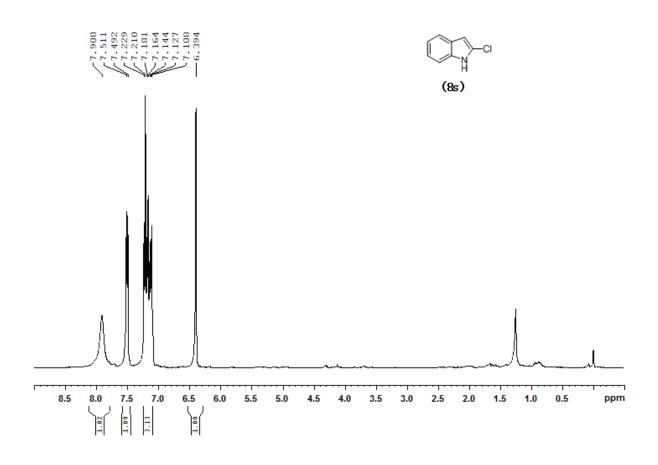


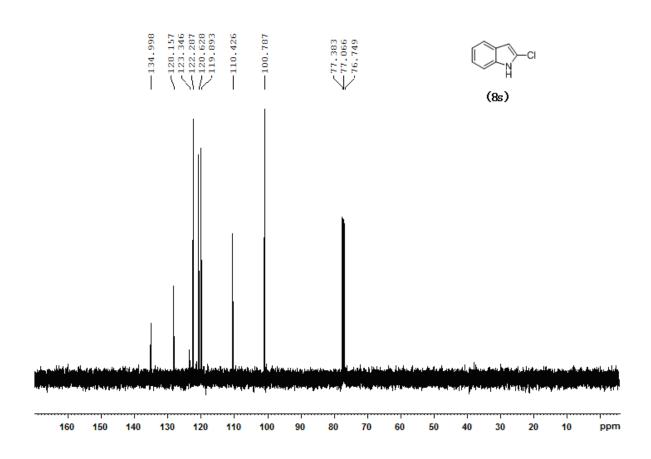


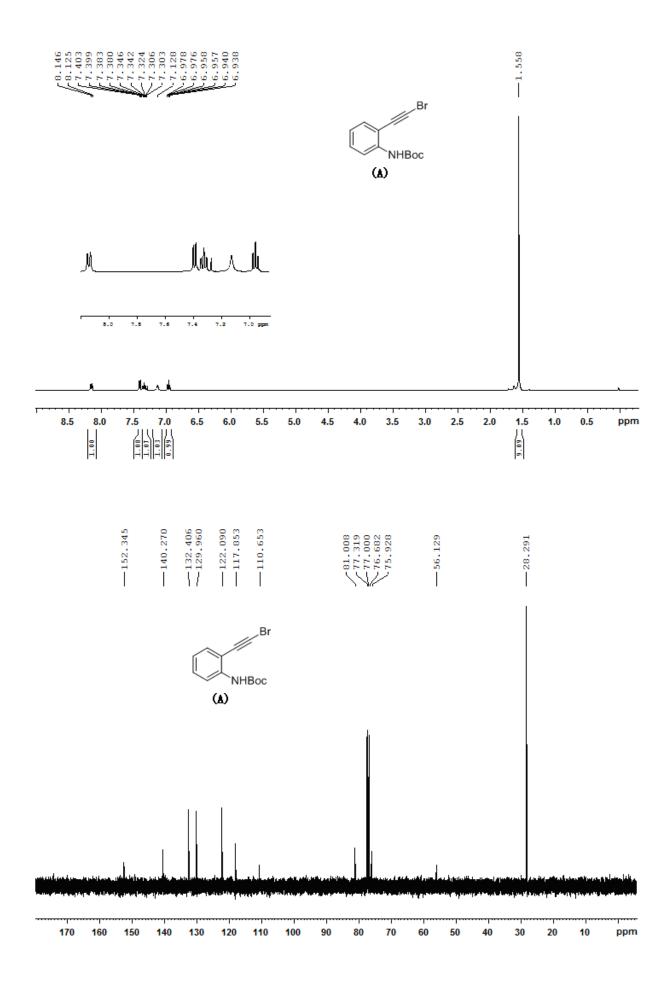


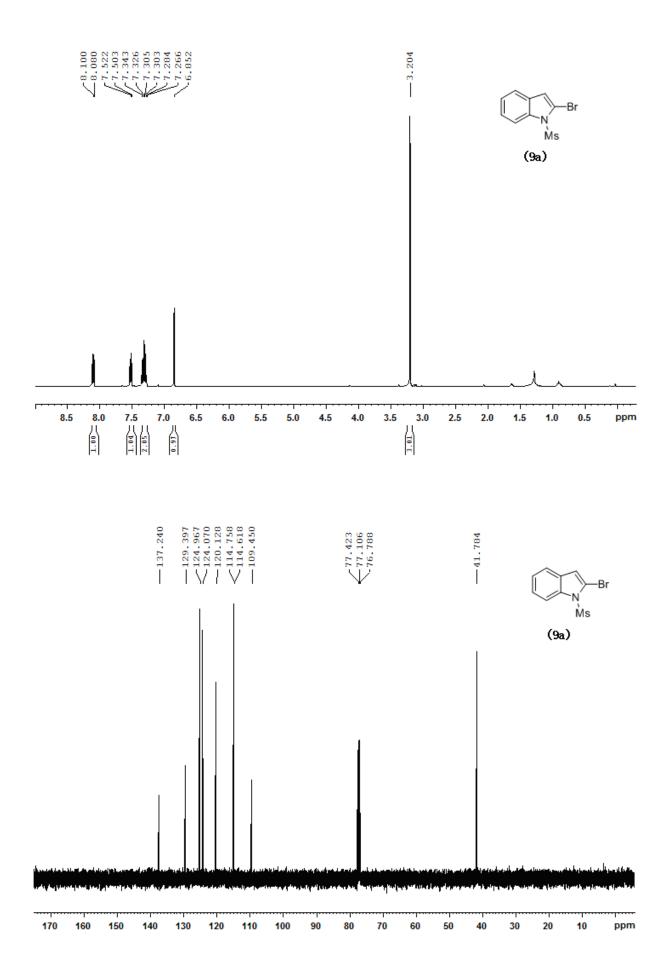


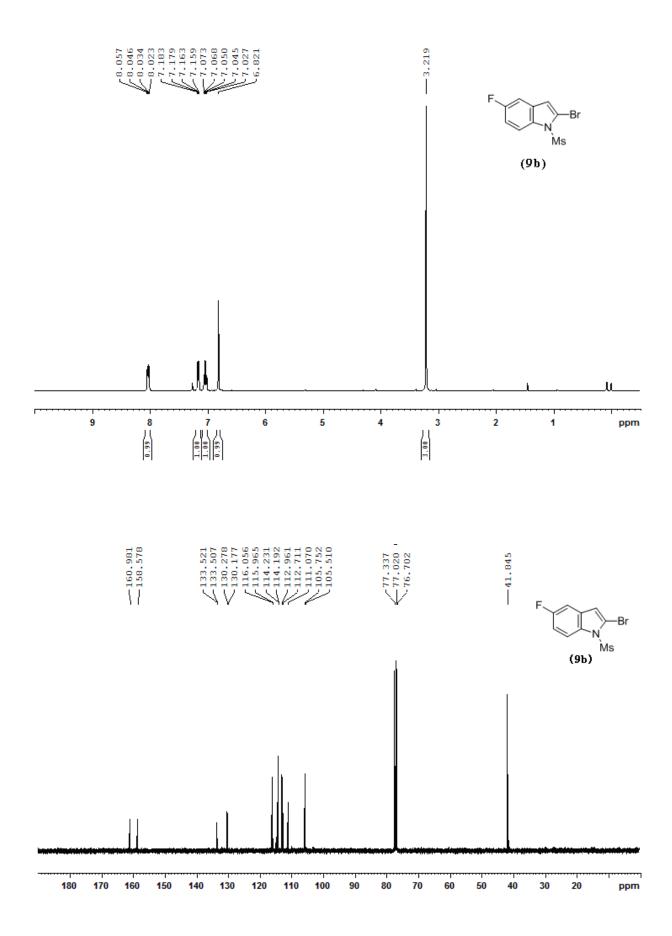


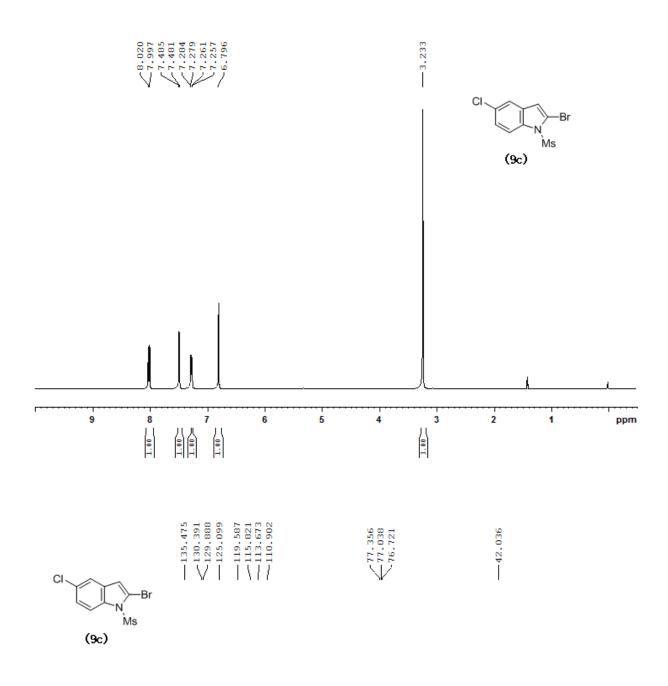


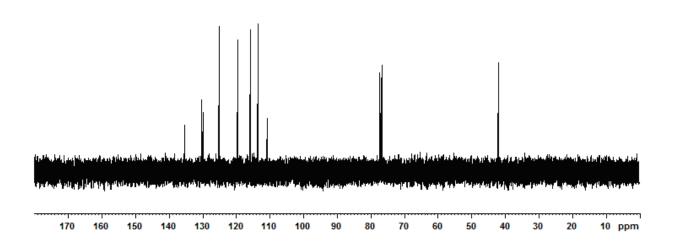


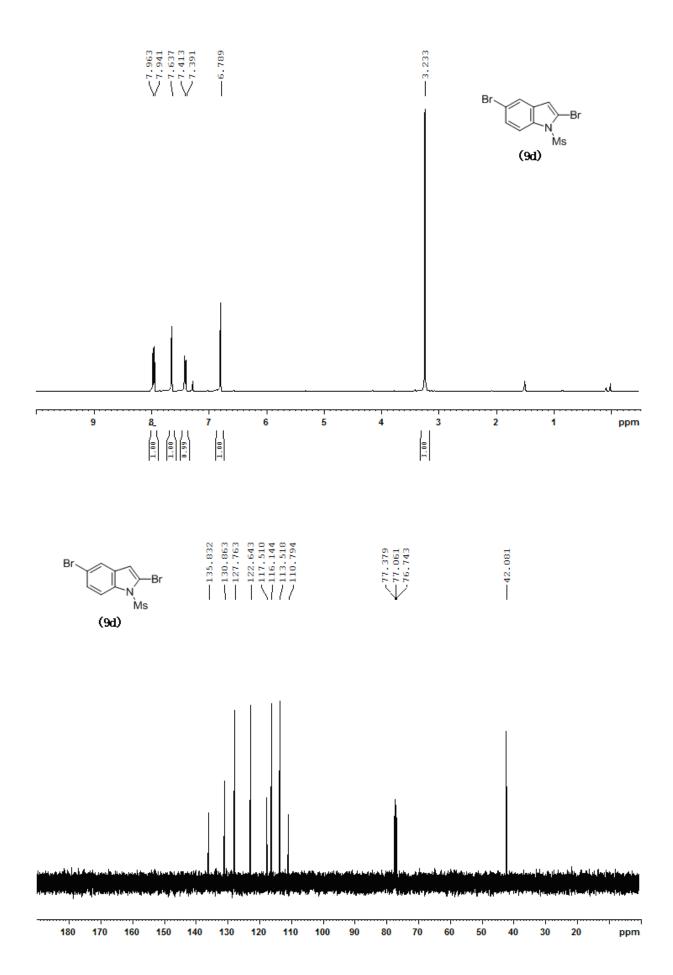


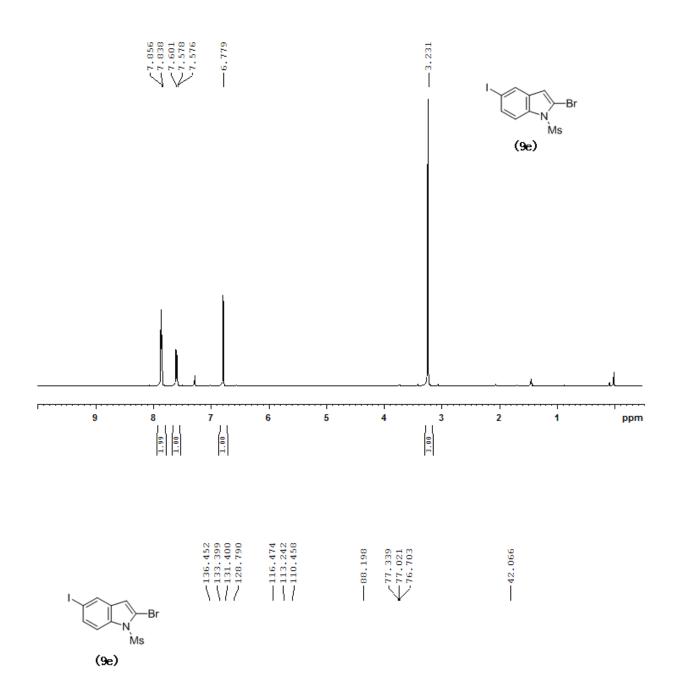


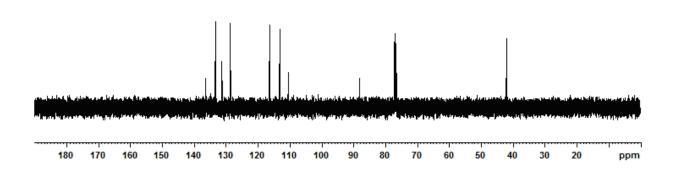


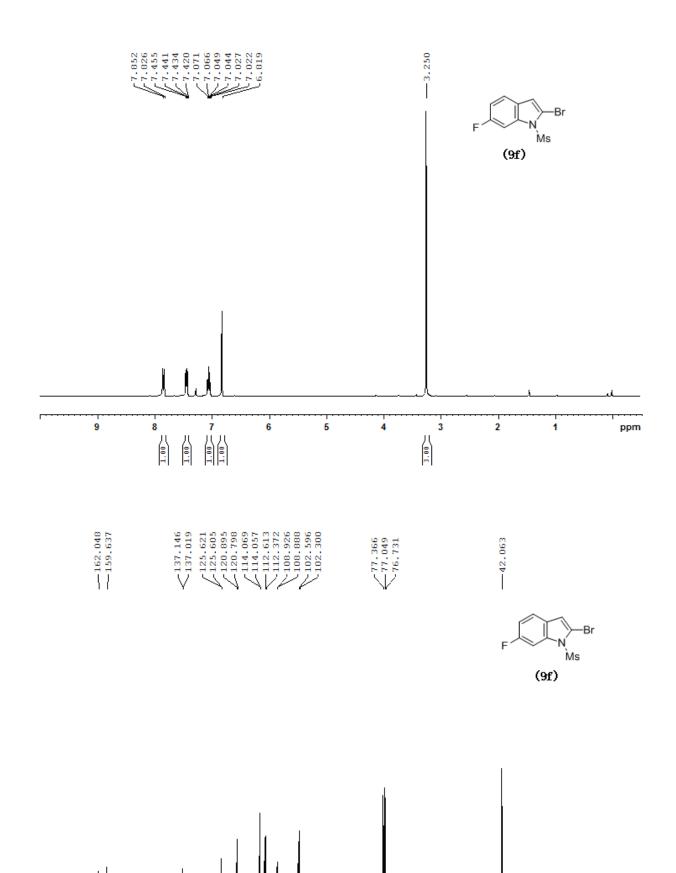


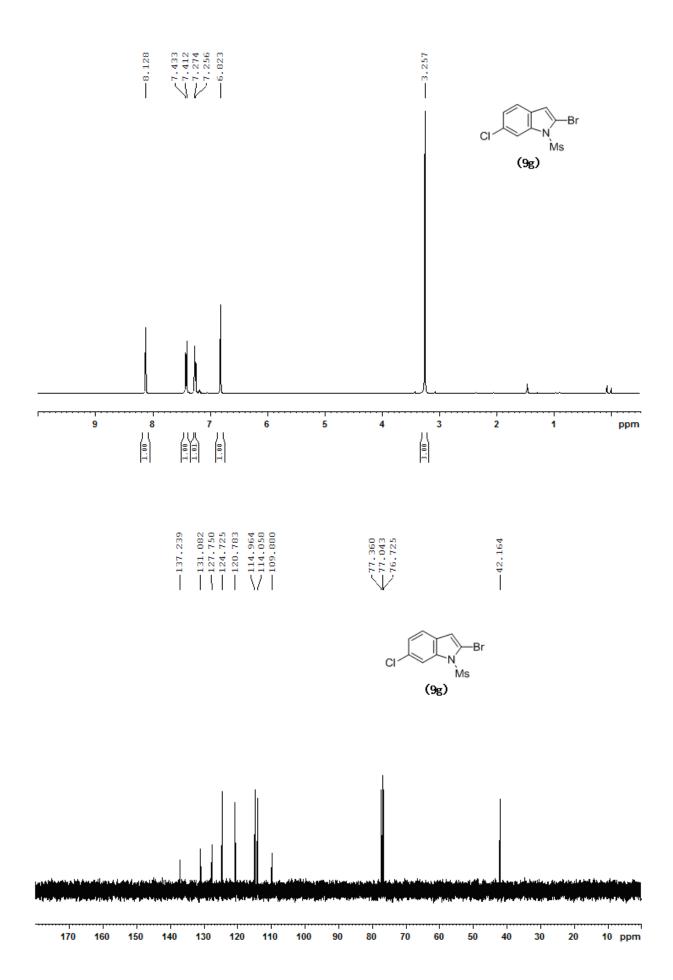


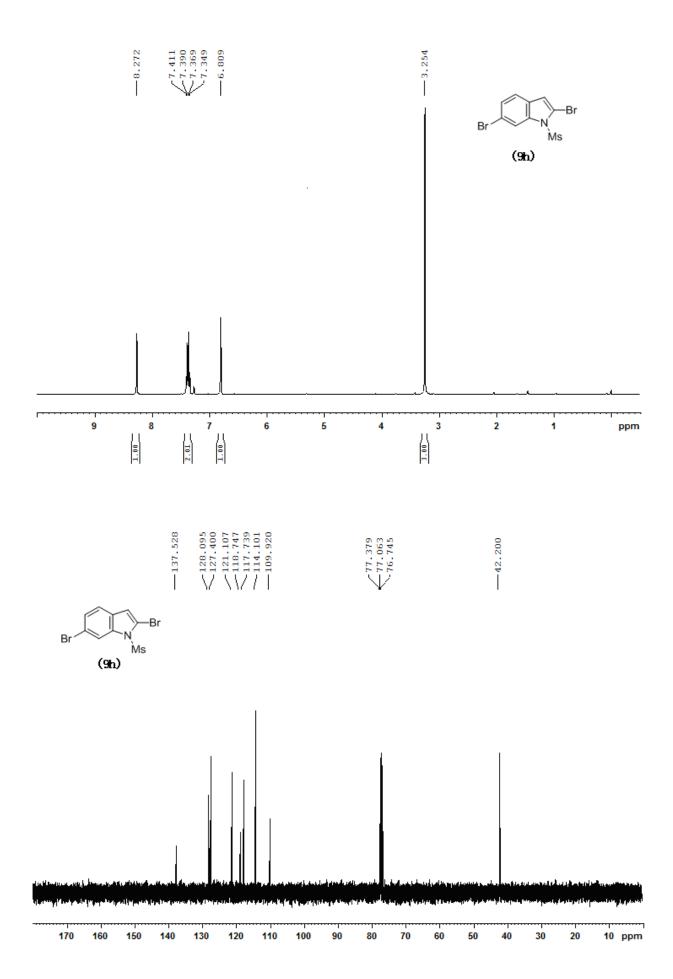


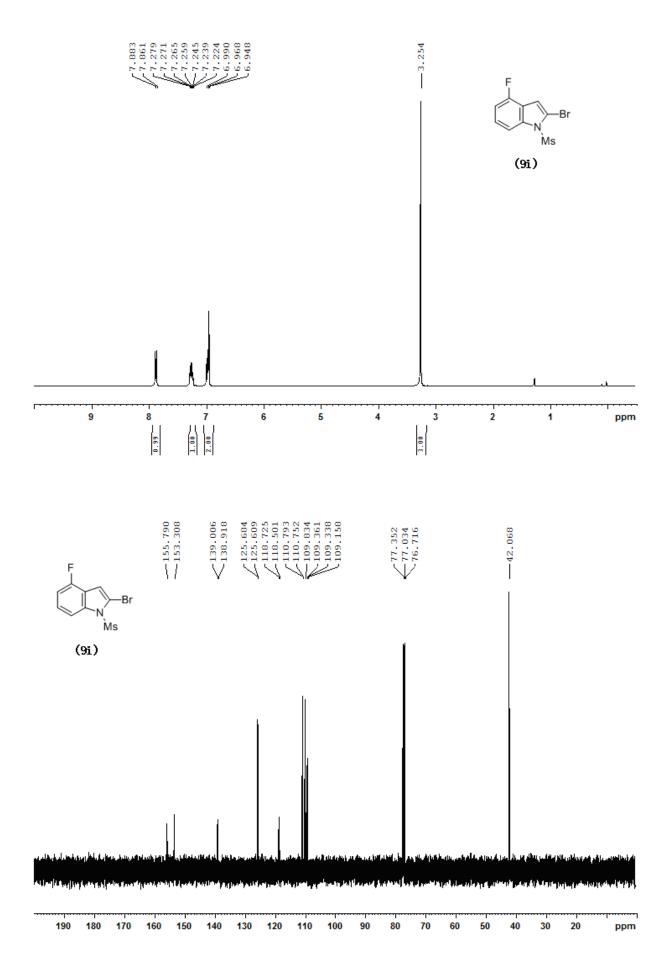


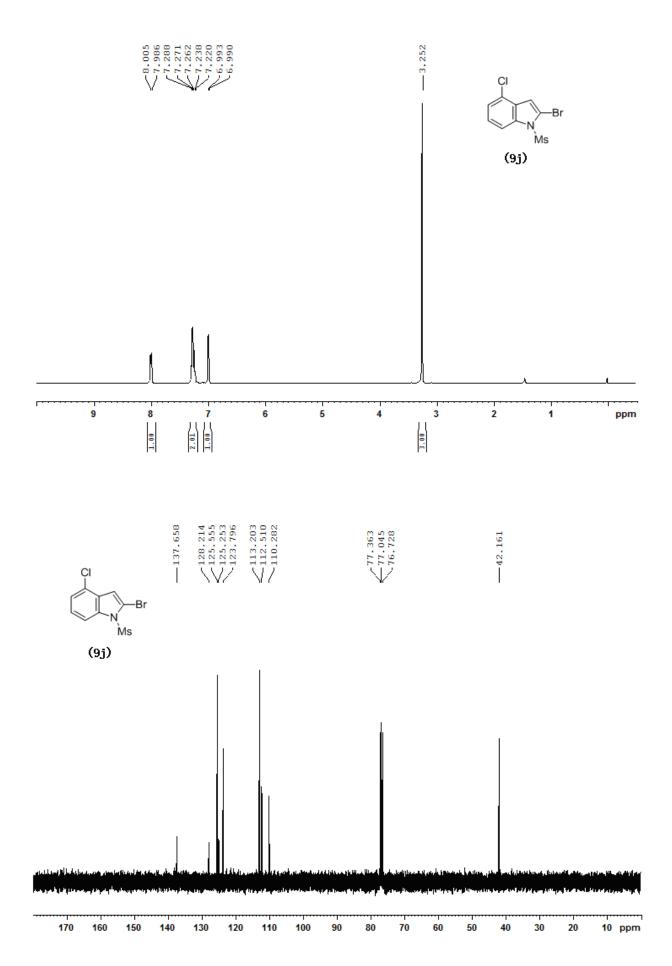


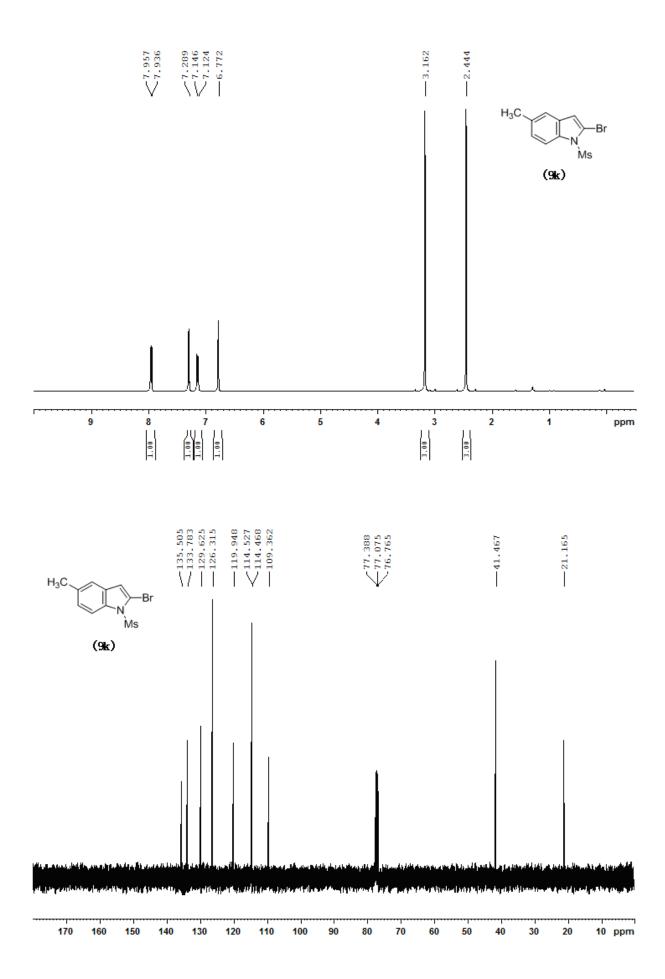


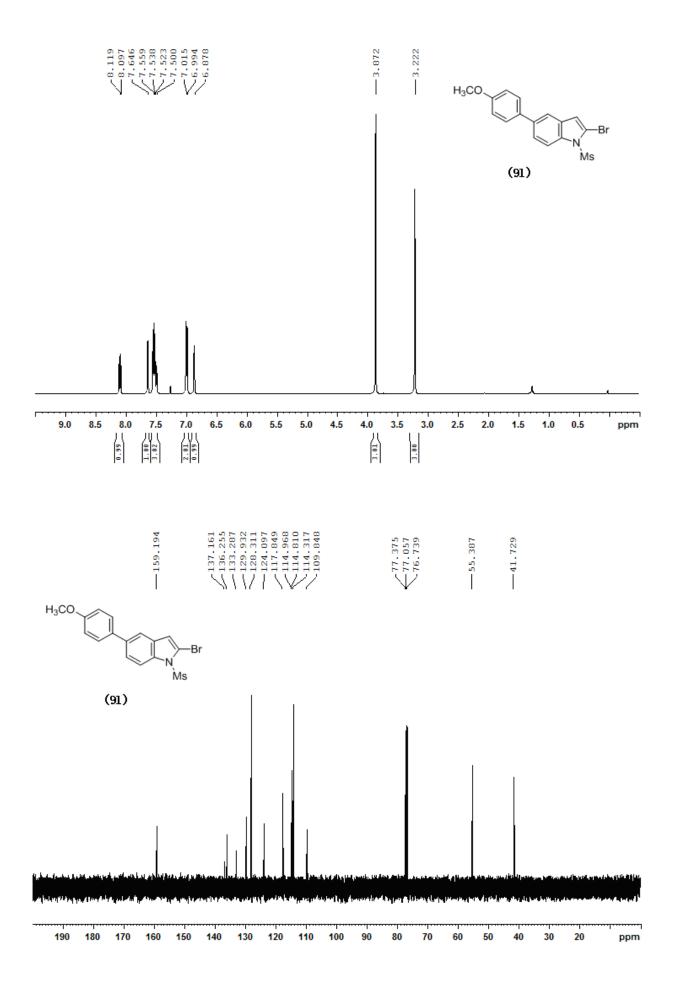


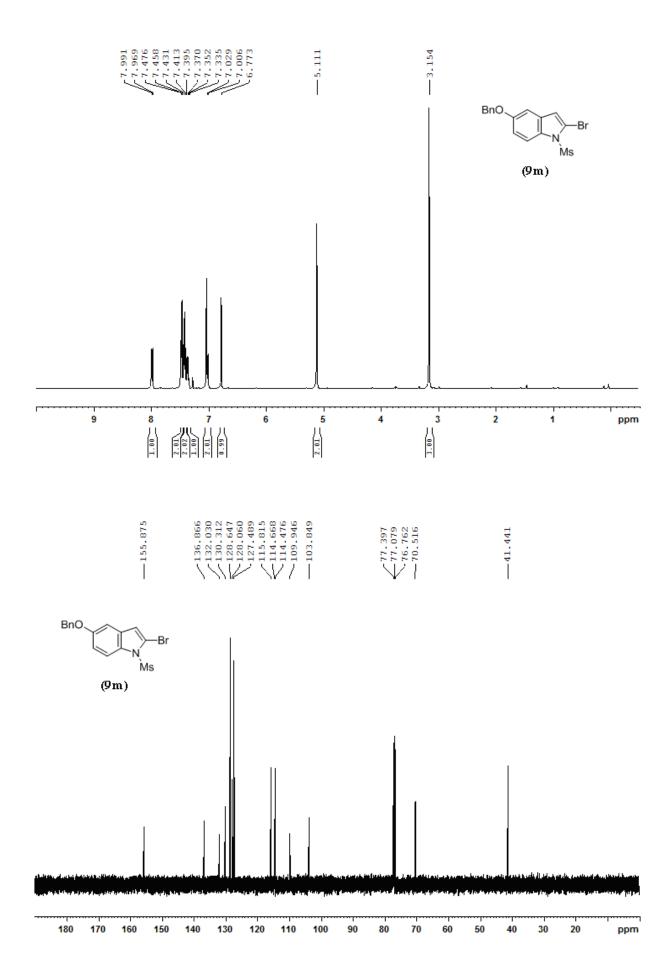


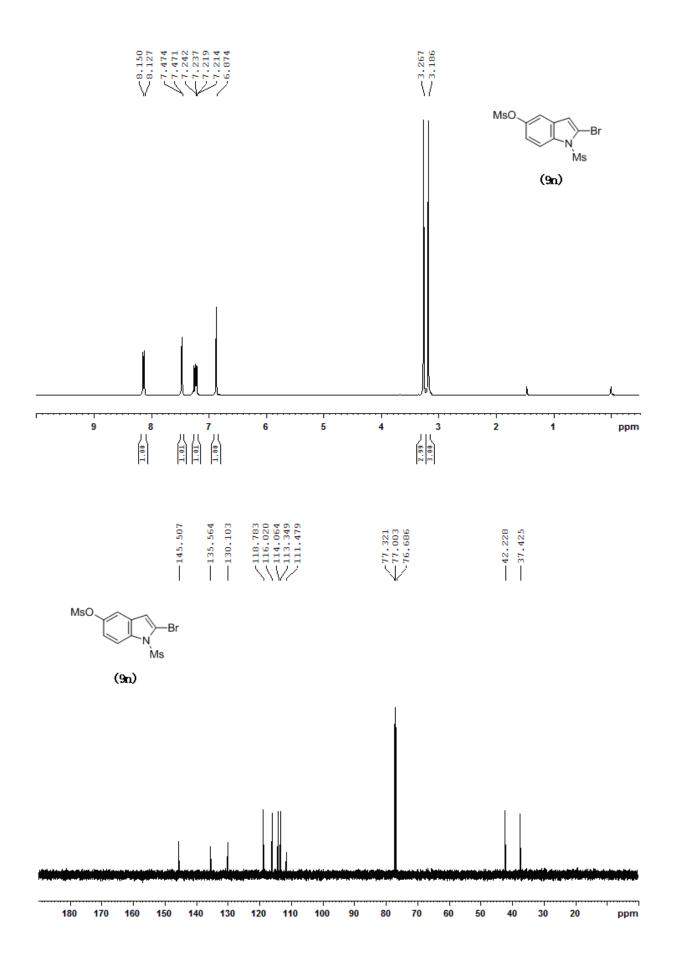


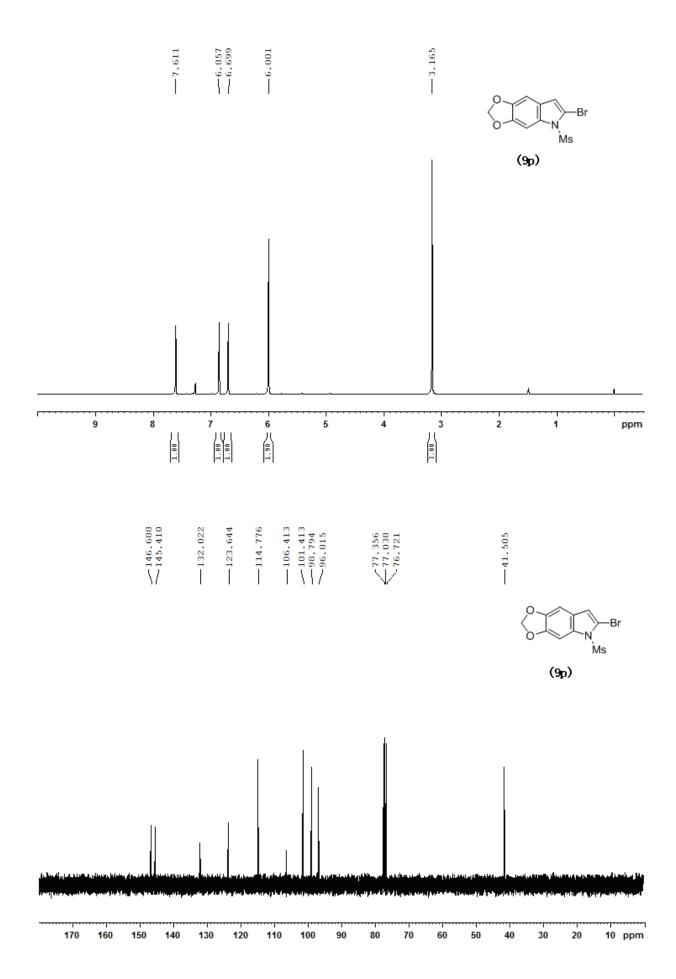


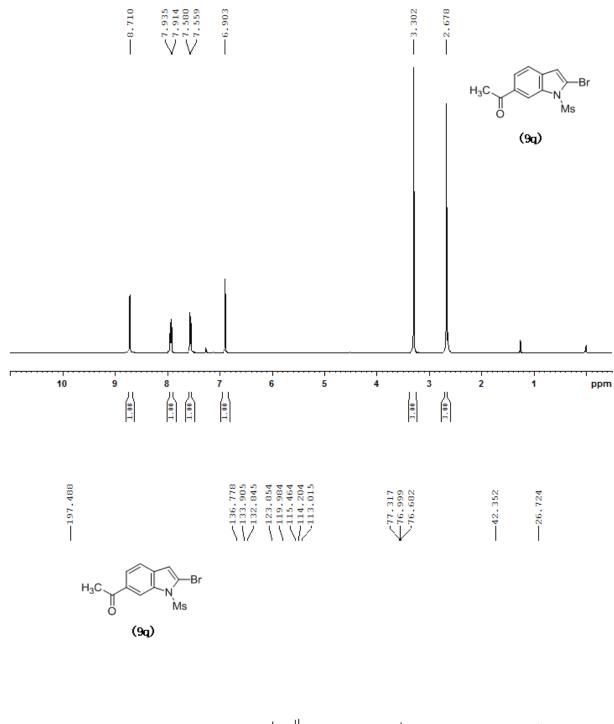

10 ppm

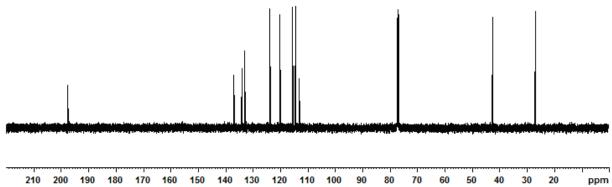


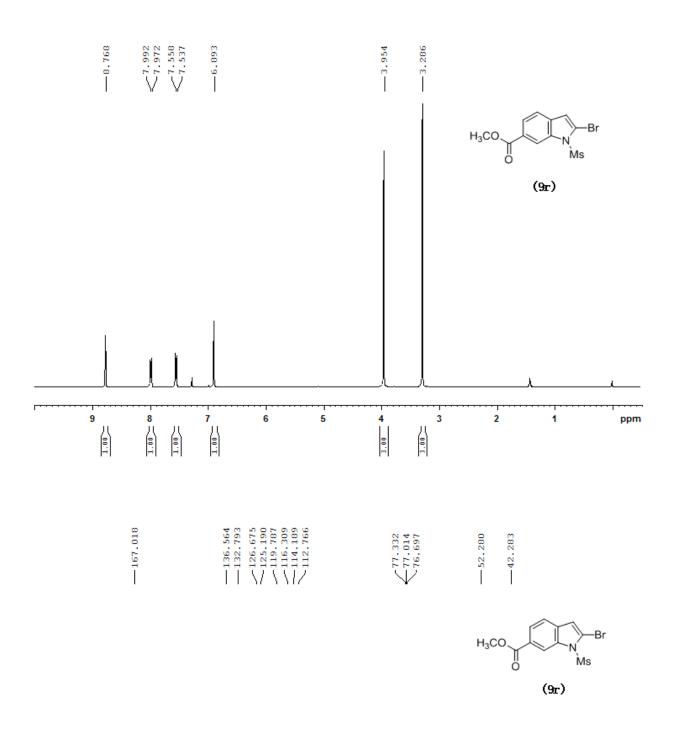


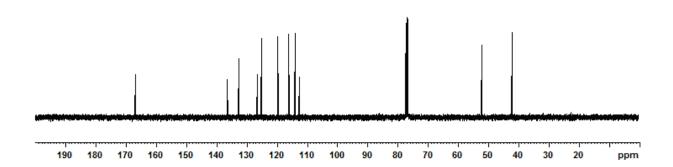


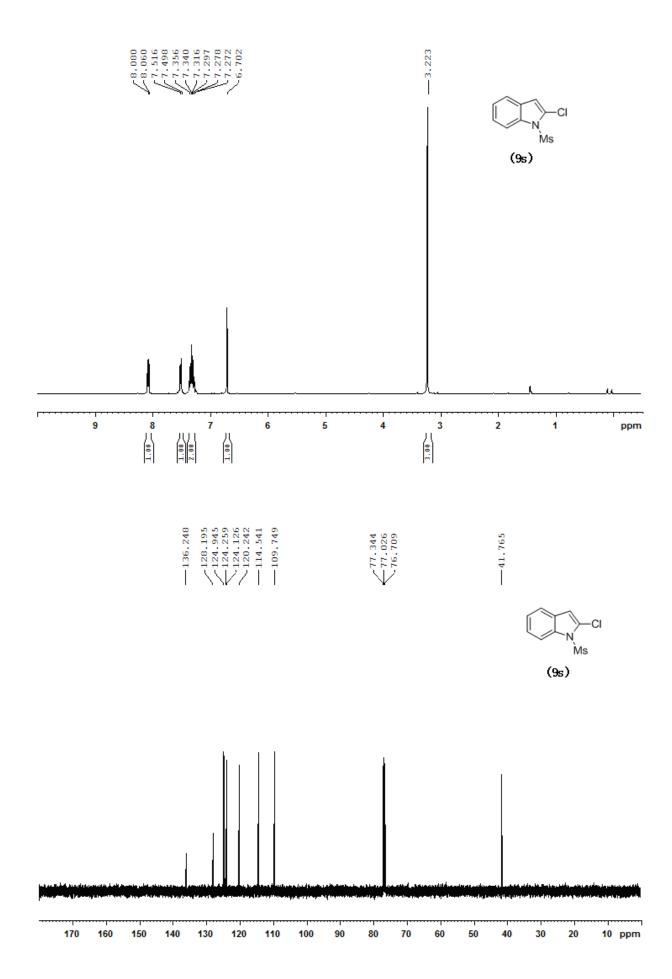


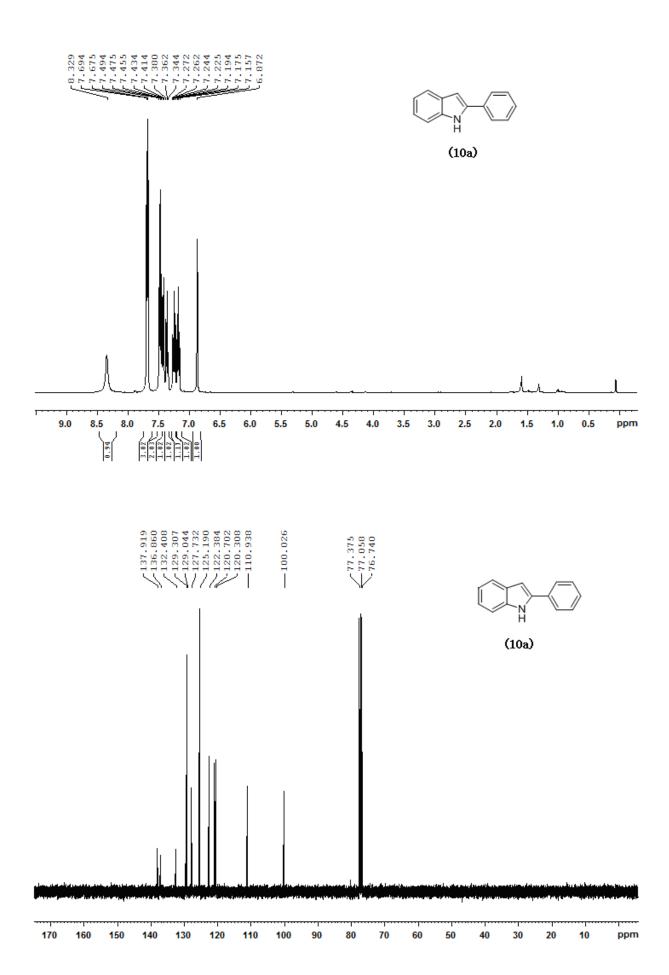












7. References

- [1] Fang, Y.-Q.; Lautens, M. J. Org. Chem. 2008, 73, 538.
- [2] Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416.
- [3] Bergman, J.; Venemalm, L. J. Org. Chem. 1992, 57, 2495.
- [4] Jiang, B.; Tao, K.; Shen, W.; Zhang, J. Tetrahedron Lett. 2010, 51, 6342.