An Efficient and Stable Ru–Ni/C Nano-Bimetallic Catalyst with a Comparatively Low Ru Loading for benzene Hydrogenation under Mild Reaction Conditions

Lihua Zhu, Li Zheng, Kunqiao Du, Hao Fu, Yunhua Li, Guirong You and Bing H. Chen*

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green

Chemical productions of Alcohols-Ethers-Esters, Xiamen University, Xiamen 361005, P.R. China. E-mail: <u>chenbh@xmu.edu.cn</u>; Tel: +86-592-2185253; Fax: +86-592-2184822

Fig S1 N2 adsorption-desorption isotherms for (a) carbon, (b) 1.03%Ni/C (uncalcined), (c) 1.03%Ni/C (calcined),

(d) 0.07%Ru/C.

Fig S2 Pore size distributions of (a) carbon, (b) 1.03%Ni/C (uncalcined), (c) 1.03%Ni/C (calcined), (d) 0.07%Ru/C.

1001 1001

Fig S3 H₂-TPD profiles of (a) carbon, (b) 1.03%Ni/C (calcined), (c) 0.024%Ru–1.00%Ni/C, (d) 0.070%Ru/C.

Fig S4 XPS spectrum of Ni 2p in (a) 1.03%Ni/C (uncalcined), (c) 0.024%Ru-1.00%Ni/C, XPS spectra at the Ru 3d edge of (b) 0.07%Ru/C, (d) 0.024%Ru-1.00%Ni/C.

Fig S4

Fig S5 XPS spectra at the Ru $3p_{3/2}$ edge of 0.024% Ru-1.00% Ni/C.

Fig S5

Fig S6 XRD patterns of (a) 1.03%Ni/C (uncalcined) (NO PVP), (b) 1.03%Ni/C (uncalcined) (PVP).

Fig S6

Fig S7 SEM images of (a) Carbon, (b) 1.03%Ni/C (uncalcined), (c) 0.070%Ru/C, (d) 0.024%Ru-1.00%Ni/C.

Fig S8 HRTEM images of (a, b, c, d) 0.07% Ru/C catalyst.

Fig S9 HRTEM images of (a, b) 0.024% Ru–1.00% Ni/C catalyst after used for ten times.

Fig S9

Entry	Sample	$S_{BET} (m^2 \cdot g^{-1})^a$	$V_a (cm^3 \cdot g^{-1})^b$	$r_{p}(nm)^{c}$				
1	Carbon	1385.3	1.91	2.75				
2	1.03%Ni/C (uncalcined)	833.5	0.97	2.30				
3	1.03%Ni/C (calcined)	1224.5	1.90	3.10				
4	0.024%Ru-1.00%Ni/C	1201.9	1.20	2.0				
5	0.070%Ru/C(calcined)	1209.4	1.93	3.19				
^a Specific surface area. ^b Pore volume. ^c Mean pore radius.								

 Table S1 Structure parameters of different catalysts

 Table S2 Chemical states, binding energies (BE) and ratios of integrated intensities (atomic ratios; AR) of Ni

element in 0.024%Ru-1.00%Ni/C before used and after used for 10 times									
Samples	Ni (2p3/2)								
		Ni(0)	NiO	Ni(OH) ₂	NiOOH				
0.0240/ Dr. 1.000/ NF/C	BE (eV)	852.8	853.7	855.6	856.4				
0.024%Ku-1.00%INI/C	AR (%)	7.92	12.58	15.72	63.78				
$0.024\% Ru{-}1.00\% Ni/C$ (after used for 10	BE (eV)	852.8	853.7	855.6	856.4				
times)	AR (%)	8.45	13.69	16.61	61.25				

 Table S3 Chemical states, binding energies (BE) and ratios of integrated intensities (atomic ratios; AR) of Ru

 element in 0.024%Ru–1.00%Ni/C before used and after used for 10 times

		Ru	(3d5/2)	
Samples		Ru(0)	RuO ₂	
0.0249/ D 1.009/ N:/C	BE (eV)	280.4	281.2	
0.024%Ru-1.00%N1/C	AR (%)	48.56	51.44	
0.024% Ru1.00% Ni/C (after used for 10	BE (eV)	461.7	464.3	
times)	AR (%)	47.37	52.63	