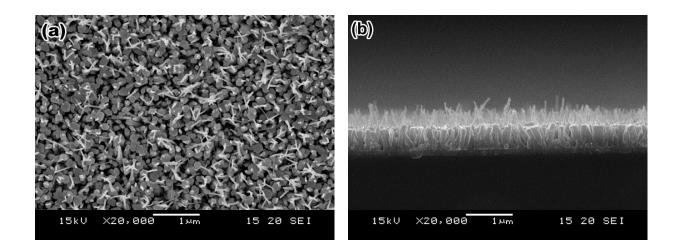
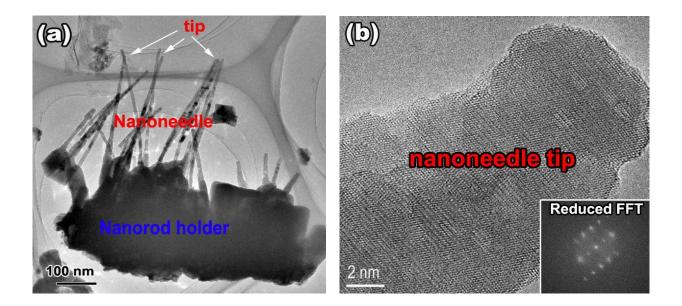
Electronic Supplementary Information:

Hybrid single/poly-crystalline ZnO nanoawl arrays: facile synthesis and enhanced field emission properties

Feng Xu,^{†^a} Jing Chen,^{†^b} Yunsong Di,^{bc} Yunkang Cui,^b Jun Sun,^a Litao Sun,^{*a} Wei Lei,^b Chunxiang Xu^d and Weilie Zhou^{*e}


^aSEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China. E-mail: slt@seu.edu.cn; Fax: +86-25-83792939; Tel: +86-25-83792632 ext. 8813

^bJiangsu Information Display Engineering Research Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China


^cSchool of Physics and Technology, Nanjing Normal University, Nanjing 210046, China

^dElectrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA, Cambridge, UK

^eAdvanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, USA. E-mail: wzhou@uno.edu

Fig. S1 (a) Top-view and (b) cross-section SEM image of single-crystalline ZNA arrays, exhibiting the same areal density as poly-crystalline ZnO nanoawl arrays (see Fig.3 in the manuscript).

Fig. S2 (a) TEM image of single-crystalline ZNA arrays, exhibiting the same morphology and size as poly-crystalline ZnO nanoawl arrays (see Fig.6 in the manuscript), (b) HRTEM image of a nanoneedle tip, showing the single-crystalline structure.