Supporting Information

List of the contents

Scheme S1	Structure of 1-phenyl-3-((dimethylamino)styryl)-5-(dimethylamino) phenyl)-2-pyrazoline	S5

Table S1 Choice of solvents for the synthesis of $\mathbf{1}$ under reflux conditions
S6Table S2 Crystal data of selected compounds
S7
Table S3 Interactions observed in 1b, 1c, and $\mathbf{1 f}$ S8
$\begin{array}{lll}\text { Figure } \mathbf{S 1} & \text { Deshielding of proton } H_{a} \text { and Shielding of proton } H_{b} \text { with respect } \\ & \text { to position } & \text { S9 }\end{array}$
$\begin{array}{lll}\text { Figure S2 } & \begin{array}{l}\text { Deshielding of proton } \mathrm{H}_{\mathrm{a}} \text { and Shielding of proton } \mathrm{H}_{\mathrm{b}} \text { with respect } \\ \text { to position and bulkiness }\end{array} & \mathbf{S 1 0}\end{array}$
$\begin{array}{lll}\text { Figure S3 } & \text { UV-visible and fluorescence spectra of pyrazolopyridines } & \\ & \text { dissolved in acetonitrile. } & \mathbf{S 1 1}\end{array}$
$\begin{array}{lll}\text { Figure S4 } & \text { Plot of solvent polarity parameter } \mathrm{E}_{\mathrm{T}}(30) \text { versus non-radiative rate } & \\ & \text { constant }\left(\mathrm{K}_{\mathrm{nr}}\right) \text { of } \mathbf{1 , 1 d} \text {, and } \mathbf{1 e} & \mathbf{S 1 2}\end{array}$
$\begin{array}{lll}\text { Figure S5 } & \text { Optimized geometries of } \mathbf{1} \text { and } \mathbf{1 e} \text { using Gaussian } 03 \text { at } & \mathbf{S 1 3}\end{array}$
Figure S6 Molecular orbital diagrams of 1a and 2a calculated using
Gaussian 03 at B3LYP/6-31G level of theory. Hydrogen atoms are omitted for clarity.
$\begin{array}{lll}\text { Figure S7 } & \text { Molecular orbital diagrams of 1a and 2a calculated using } & \text { S15 } \\ & \text { Gaussian 03 at B3LYP/6-31G level of theory. Hydrogen atoms } & \\ & \text { are omitted for clarity. } & \end{array}$
Figure S8 Molecular orbital diagrams of 1a and 2a calculated using S16 Gaussian 03 at B3LYP/6-31G level of theory. Hydrogen atoms are omitted for clarity.
Figure S9 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound $1 \quad$ S17
Figure S10 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 1a S18
Figure S11 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 1b $\mathbf{1 b}$
Figure S12 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound $\mathbf{1 e}$ S20
Figure S13 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 1c S21
Figure S14 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 1d S22
Figure S15 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound if S23
Figure S16 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 2a S24
Figure S17 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 2b S25
Figure S18 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 2c S26
Figure S19 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 2d S27
Cartesian coordinates of compound $\mathbf{1}$ S28

NMR and Crystalographic discussion :

Synthesized compounds were characterized by FTIR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS analysis. Substitution at $2^{\text {nd }}$ position, irrespective of its electron withdrawing and electron donating nature, shifts the stereogenic protons Ha towards deshielding region ($\mathbf{1 b}>\mathbf{1}>\mathbf{2 b} \Rightarrow$ $5.04>4.60>4.53 \delta \mathrm{ppm})$ and proton Hb towards shielding region $(\mathbf{1 b}<\mathbf{1}=\mathbf{2 b} \Rightarrow 3.96<$ $4.04=4.04 \delta \mathrm{ppm}$) when compared to 1 and respective 4 -sustituted compounds as shown in Figure S1 (SI). This was further confirmed by replacement of fluorine by bulkier trifluoromethyl group at $2^{\text {nd }}$ position, which shifts proton Ha to more deshielding region (1c < $\mathbf{1 e}=5.01<5.12 \delta \mathrm{ppm})$ and Hb towards shielding region $(\mathbf{1 c}>\mathbf{1 e}=3.86>3.72 \delta \mathrm{ppm})(\mathrm{SI}$, Figure S2). The vinylic proton (Hc) shifts slightly towards deshielding region when electron withdrawing groups (-I effect) are present on benzylidine ring irrespective of their position whereas that of electron donating groups (+I effect) slightly shifts the proton towards shielding region $(\mathbf{1 b}<\mathbf{1}<\mathbf{1 c}=6.78<6.82<6.84 \delta \mathrm{ppm})$.

Single crystal structures of some of the representative compounds were determined to examine the conformations of these compounds. Earlier, we have reported structure of 1d, (7E)-5-Benzyl-7-(2-chlorobenzylidene)-3-(2-chlorophenyl)-2-phenyl-3,3a,4,5,6,7-hexahydro-2H-pyrazolo[4,3-c]pyridine. ${ }^{1}$ A search in Cambridge Structural Database (version 5.31) for 2H-pyrazolo[4,3-c]pyridines retrieved none except 1d. The structures of $\mathbf{1 b}, \mathbf{1 c}$, $\mathbf{1 f}$ with adopted atomic numbering scheme is shown in Figure 1 a-c. In $\mathbf{1 b}$ and $\mathbf{1 c}$, asymmetric units comprise of two different molecules with minor conformational differences (RMSD of 0.794 \AA and $0.972 \AA$ between different molecules of asymmetric units, respectively for $\mathbf{1 b}$ and $\mathbf{1 c}$). These compounds are racemic mixtures. Similar to 1d, the stereogenic centers, C3 and C3A of the reported models of $\mathbf{1 b}$ and $\mathbf{1 f}$ possess (R, R)-configurations (SI, Table S2). Interestingly crystal structure of $\mathbf{1 c}$ reveals coexistence of (S, R) and (R, S) configurations of the stereogenic centers, C3 and C3A. This observation suggests that both configurations are energetically accessible. The coexistence of two configurations within an asymmetric unit has been previously observed for Boc-Leu-Dpg-Val-OMe. ${ }^{2}$ The five membered dihydropyrazole ring ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 3 / \mathrm{C} 3 \mathrm{~A} / \mathrm{C} 7 \mathrm{~A}$) adopts an envelope conformation with atom C 3 at the flap of the envelope and an adjacent 6-membered piperidine ring (C3A/C4/N5/C6/C7/C7A) assumes a chair conformation, but substantially distorted from ideal geometry. Short intra-molecular $\mathrm{C}-\mathrm{H} \cdots \cdot{ }^{\text {halogen }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts were observed in $\mathbf{1 b}, \mathbf{1 c}$ and $\mathbf{1 f}$ leading to modulation of their photophysical properties (vide infra). A dimer is formed in $\mathbf{1 f}$ (similar to 1d) by
$\mathrm{C} 29-\mathrm{Cl} 3 \cdots \mathrm{Cg} 5^{\mathrm{i}}$ [symmetry code (i): $1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}, \mathrm{Cg} 5$ is the centroid of (C21-C26) ring]. The $\mathrm{Cl} 3 \cdots \mathrm{Cg} 5$ distance and $\mathrm{C} 29-\mathrm{Cl} 3 \cdots \mathrm{Cg} 5$ angle are $3.7407(15) \AA$ and $137.9(1)^{\circ}$, respectively, whereas the minimum atomic distance in $\mathrm{Cl} 3 \cdots \mathrm{Cg} 5$ is 3.366 (4) $\AA . . \mathrm{Cg} 5$ is the centroid of (C21-C26) ring. The C-Halogen $\cdots \cdot \pi$ dimeric interactions [also referred as PHD; π-halogen-dimer interactions] have been shown recently, ${ }^{3}$ to play an important role in hostguest chemistry. ${ }^{4}$ The notable interactions in the crystal packing are C-H... π interactions (SI, Table S3).

References

1. N. S. Karthikeyan, B. U. Mahesh, K. Sathiyanarayanan, P.Raghavaiah and R. S. Rathore,Acta Cryst., 2010, E66, o1734.
2. S. Prasad, S. Mitra, E. Subramanian, D. Velmurugan, R. B. Rao and P. Balaram, Biochem. Biophys. Res. Commun., 1994, 198, 424.
3. A. N. M. M. Rahman, R. Bishop, D. C. Craig and M. L. Scudder,Org. Biomol. Chem., 2004, 2, 175.
4. B. Nagaraj, T. Narasimhamurthy, H. S. Yathirajan, P. Nagaraja, R. S.Narasegowda and R. S. Rathore, Acta Cryst. C, 2005, 61, o177.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

Scheme S1

Table S1 Choice of solvents for the synthesis of $\mathbf{1}$ under reflux conditions ${ }^{\text {a }}$

Entry	Solvent		
$\mathbf{1}$	Methanol	48	$\mathbf{6 0}$
$\mathbf{2}$	Ethanol	48	58
$\mathbf{3}$	Iso-Propanol	14	$\mathbf{8 6}$
$\mathbf{4}$	n-Butanol	18	74
$\mathbf{5}$	Acetic acid	36	$\mathbf{6 8}$
$\mathbf{6}$	Acetonitrile	36	$\mathbf{3 0}$
$\mathbf{7}$	Toluene	48	$\mathbf{4 6}$
$\mathbf{8}$	Ethyl acetate	48	$\mathbf{1 0}$
$\mathbf{9}$	Chloroform	24	$\mathbf{0}$
$\mathbf{1 0}$	Tetrahydrofuran	24	$\mathbf{0}$
$\mathbf{1 1}$	Dichloromethane	24	$\mathbf{0}$
$\mathbf{1 2}$	Acetone	24	$\mathbf{0}$
$\mathbf{1 3}$	Diethyl ether	24	$\mathbf{0}$
$\mathbf{1 4}$	Dimethylformamide	36	$\mathbf{7 0}$
$\mathbf{1 5}$	Dimethysulfoxide	36	$\mathbf{7 4}$

${ }^{a}$ All the reactions were carried out by employing 0.001 mol of curcumin derivatives (3a-3p), 0.001 mol of phenyl hydrazine in 10 ml of given solvent ${ }^{\text {bisolated yields }}$

Table S2 Crystal data of selected compound

compounds	1c	1f	1b
Chemical formula	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{3}$	$\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{Cl}_{4} \mathrm{~N}_{3}$	$\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}$
Molecular Weight	491.57	593.35	515.63
Crystal size (mm)	$0.6 \times 0.4 \times 0.2$	$0.4 \times 0.4 \times 0.4$	$0.4 \times 0.4 \times 0.3$
Morphology	block, colorless	block, colorless	block, colorless
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	P1bar	P2 ${ }_{1} / \mathrm{c}$	P1bar
Unit cell parameters,	12.8417(9), 14.1308(9),	$13.7524(4), 15.4132(5),$	14.9779(8), 14.9860(8),
$\mathrm{a}(\mathrm{A}), \mathrm{b}(\mathrm{A}), \mathrm{c}(\mathrm{c}), \alpha()^{\prime}, \beta(\mathrm{)})$, $\square \gamma\left({ }^{\circ}\right)$	$\begin{gathered} 16.3607(11), 81.235(5), \\ 69.026(6), 69.420(6) \end{gathered}$	$\begin{aligned} & 13.4826(4), 90.0, \\ & 101.715(3), 90.0 \end{aligned}$	$88.293(4), 62.667(5)$
Volume (\AA^{3})	2594.1(3)	2798.36(15)	2809.1(3)
Z/Z'	4/2	4/1	4/2
Cell measuring reflections	6319	12840	7106
θ-range (${ }^{\circ}$)	2.7-29.4	2.6-29.2	2.6-29.2
$\mu\left(\mathrm{mm}^{-1}\right)$ absorption	0.084 ,	0.451,	0.076 ,
correction	multi-scan	multi-scan	multi-scan
$\mathrm{F}(000)$	1032	1224	1096
$D_{\mathrm{x}}\left(\right.$ calculated) $\quad\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	0.071	0.224	2.318
Data Collection			
Radiation (Å)	0.71073 ($\mathrm{MoK} \alpha)$	0.71073 (MoK α)	0.71073 (MoK α)
Temperature (${ }^{\circ} \mathrm{K}$)	293	293	293
θ Range (${ }^{\circ}$)	2.7-26.0	2.6-26.0	2.6-26.0
Indices	$\mathrm{h}=-15 \rightarrow 15$	$\mathrm{h}=-16 \rightarrow 16$	$\mathrm{h}=-18 \rightarrow 18$
	$\mathrm{k}=-17 \rightarrow 17$	$\mathrm{k}=-19 \rightarrow 18$	$\mathrm{k}=-18 \rightarrow 18$
	$1=-19 \rightarrow 20$	$1=-16 \rightarrow 16$	$1=-19 \rightarrow 19$
Scan type	ω scans	ω scans	ω scans
Independent reflections	10192	5500	11037
Observed Reflections $[\mathrm{I}>2 \sigma(\mathrm{I})]$	4826	3932	7218
Refinement			
Final Indices	$\mathrm{R}=0.0534, \quad \mathrm{wR}=$	$\begin{gathered} \mathrm{R}=0.0482, \mathrm{wR}= \\ 0.1216 \end{gathered}$	$\begin{gathered} \mathrm{R}=0.0529, \mathrm{wR}= \\ 0.1232 \end{gathered}$
Goodness of fit (S)	0.997	1.024	1.020
Extinction coefficient	nil	nil	nil
$(\Delta / \sigma)_{\max }$	0.0	0.0	0.0
$\begin{aligned} & \Delta \rho_{\max } \text { and } \Delta \rho_{\text {min }} \\ & \left(\mathrm{e} \AA^{-3}\right) \end{aligned}$	0.177, -0.198	0.371, -0.406	0.158, -0.207
Data/restraints/ parameter	10192/0/668	5500/0/352	11037/0/707

$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$, parameters a and b are:
$0.0471,0.0(\mathbf{1 c}), 0.0473,1.7119(\mathbf{1 f})$ and $0.0425,0.4372(\mathbf{1 b})$, respectively.

Table S3 Interactions observed in $\mathbf{1 b}, \mathbf{1 c}$, and $\mathbf{1 f}$

	Interactions	D-H...A	D-H (Å)	H...A (A)	D...A (\AA)	D-H...A $\left({ }^{\circ}\right.$)
1c	Intra-molecular	C3A-H3A...F1A	0.98	2.39	2.781(4)	103
		C3B-H3B...F1B	0.98	2.44	2.781(4)	100
		C13A-H13A...N1A	0.93	2.40	2.730 (3)	100
	Inter-molecular	C32A-H32A...Cg10 ${ }^{\text {i }}$	0.93	2.97	3.761(5)	144
1f	Intra-molecular	C3-H3...Cl1	0.98	2.62	3.135(3)	113
		C27-H27...Cl3	0.93	2.74	3.034(3)	100
1b	Intra-molecular	C4A-H4A2...O1A	0.97	2.41	3.079(2)	126
		C4B-H4B2...O1B	0.97	2.40	3.072(2)	126
		C19A-H19A...N2A	0.93	2.48	2.844(3)	103
		C19B-H19B...N2B	0.93	2.48	2.842(3)	103
		C20A-H20A...Cg11	0.97	2.96	3.923(3)	172
		C34B-H34F...Cg12	0.96	2.99	3.772 (3)	140
	Inter-molecular	C12B-H12B...Cg13ii	0.93	2.95	3.718(3)	141
		C16B-H16B...Cg13 ${ }^{\text {iii }}$	0.93	2.93	3.776(3)	152
		C25A-H25A...Cg10 ${ }^{\text {iv }}$	0.93	2.86	3.684(3)	149

[^0]

Figure S1 Deshielding of proton H_{a} and shielding of proton H_{b} with respect to position

1c

2c

1e

Figure S2 Deshielding of proton H_{a} and Shielding of proton H_{b} with respect to position and bulkiness

Figure S3 UV-visible and fluorescence spectra of pyrazolo pyridines dissolved in acetonitrile.

Figure S4 Plot of solvent polarity parameter $\mathrm{E}_{\mathrm{T}}(30)$ versus non-radiative rate constant $\left(\mathrm{K}_{\mathrm{nr}}\right)$ of $1,1 \mathrm{e}$, and $\mathbf{1 f}$

Side view

Top view

1

1e

Figure S5 Optimized geometries of $\mathbf{1}$ and $\mathbf{1 e}$ using Gaussian 03 at B3LYP/6-31G level

Figure S6 Molecular orbital diagrams of 1a and 2a calculated using Gaussian 03 at B3LYP/6-31G level of theory. Hydrogen atoms are omitted for clarity.

Figure S7 Molecular orbital diagrams of 1b and 2b calculated using Gaussian 03 at B3LYP/6-31G level of theory. Hydrogen atoms are omitted for clarity.

Figure S8 Molecular orbital diagrams of 1d, 2d, and $\mathbf{1 f}$ calculated using Gaussian 03 at B3LYP/631G level of theory. Hydrogen atoms are omitted for clarity.

Figure S9 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound $\mathbf{1}$

Figure S10 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 1a

Figure S11 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 1b

Figure S12 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound $\mathbf{1 e}$

Figure S13 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 1c

MSc-5

Figure S14 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound 1d

Figure S15 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound if

Figure S16 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound $2 \mathbf{a}$

Figure S17 $\quad{ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound $\mathbf{2 b}$

Figure S18 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound2c

Figure S19 ${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}$ (bottom)-NMR spectra of compound2d

Cartesian coordinates of compound $\mathbf{1}$

C	0.34732600	-0.54418000	-0.61765000
C	0.19108200	0.93678100	-0.30921800
C	-1.11129200	1.50370800	0.02384100
C	-2.05575500	0.51004600	0.69442200
C	-0.55746700	-1.39637400	0.27741400
C	1.90101300	-0.72583000	-0.56008800
H	-1.82877400	0.51996900	1.78367500
H	-0.20660400	-1.37125900	1.32519800
C	-1.36811500	2.82394600	-0.14990500
C	-2.60864700	3.57451900	0.12699500
C	-2.51973200	4.83402500	0.75821500
C	-3.88505400	3.12271300	-0.27118600
C	-3.66357800	5.59202900	1.02006800
H	-1.54346100	5.20936900	1.05109300
C	-5.02866100	3.88406600	-0.01346600
H	-3.97459500	2.19184400	-0.82128100
C	-4.92514400	5.11764500	0.64039800
H	-3.57049300	6.55341700	1.51581900
H	-5.99944500	3.52017600	-0.33604900
H	-5.81411500	5.70780000	0.83882200
H	-0.53727300	3.42654400	-0.51487400
H	-0.55991000	-2.43988700	-0.04794700
H	-3.09333900	0.82391400	0.59064200
H	0.01097100	-0.70246300	-1.65272000
C	3.63990100	1.14440400	-0.93542600
C	3.91772200	2.52721600	-0.98841800
C	4.68651100	0.22485200	-1.15374000
C	5.21364600	2.96762400	-1.25376800
H	3.11179600	3.22955900	-0.82325900
C	5.97839100	0.68650300	-1.42080800
H	4.50108400	-0.84098700	-1.10089800
C	6.25555900	2.05618800	-1.47401000
H	5.41005500	4.03504500	-1.29141700
H	6.77215800	-0.03613300	-1.58470300
H	7.26084100	2.40733500	-1.68136100
C	2.43489000	-1.40370300	0.69767400
C	2.67992800	-0.68036400	1.87616600
C	2.65742500	-2.79050600	0.69132000
C	3.13143100	-1.33517000	3.02670500
H	2.53072300	0.39418200	1.88296700
C	3.10685100	-3.44645500	1.84267300
H	2.48295400	-3.35852200	-0.21933500
C	3.34371000	-2.71940500	3.01471500
H	3.32216200	-0.76421500	3.92997900
H	3.27834600	-4.51818100	1.82168000
H	3.69777500	-3.22465100	3.90767400
N	2.33886700	0.69413300	-0.68875800
N	1.31356300	1.59630300	-0.40565300
N	-1.93111800	-0.86118100	0.15364500
H	2.23860000	-1.28958900	-1.43559700
C	-2.96901000	-1.77627100	0.66443600
H	-3.91672300	-1.22112600	0.64733500
C	-3.11531000	-3.03698400	-0.17004200

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

C	-3.14443800	-2.96287500	-1.57343500
C	-3.26764100	-4.28867900	0.44546000
C	-3.32775700	-4.11644400	-2.34152400
H	-3.00868200	-1.99656200	-2.04769400
C	-3.45624600	-5.44481900	-0.32200600
H	-3.23753300	-4.35829400	1.52974400
C	-3.48714600	-5.36141200	-1.71805300
H	-3.34821800	-4.04572700	-3.42490500
H	-3.57247800	-6.40604100	0.16922700
H	-3.63058700	-6.25648500	-2.31532000
H	-2.79077500	-2.05457200	1.72233100

[^0]: Symmetry codes (i) 1-X,1-Y,1-Z, (ii), (iii).

