Supporting Materials for

4-V Class Aqueous Hybrid Electrochemical Capacitor with Battery-like Capacity

Sho Makino,^a Yuto Shinohara, ^a Takayuki Ban, ^a Wataru Shimizu, ^a Keita Takahashi, ^b

Nobuyuki Imanishi,^b and Wataru Sugimoto^{a*}

1) Materials and Chemical Engineering, Faculty of Textile Science and Technology, Shinshu

University, 3-15-1 Tokida, Ueda, Nagano 386-8567, JAPAN

2) Department of Chemistry, Faculty of Engineering, Mie University, Mie 514-8507, JAPAN

* wsugi@shinshu-u.ac.jp

1. Experimental details

Preparation of negative electrode:

An ionic conducting poly(ethylene oxide) (PEO)-based polymer membrane of PEO-Li(CF₃SO₂)₂N-BaTiO₃ was prepared by a casting technique reported previously.^[19] PEO (Aldrich, average molecular weight: $6x10^5$) powder, and Li(CF₃SO₂)₂N salt (LiTFSI, Wako) with Li/O=1/18 were completely dissolved in anhydrous acetonitrile. BaTiO₃ (Aldrich, 0.1 µm average particle size) was homogeneously dispersed in the PEO and LiTFSI solution with acetonitrile as a filler (10 wt%). The mixture was stirred at room temperature in an N₂-filled dry glove box and was then cast into a clean Teflon dish. The acetonitrile solvent was slowly evaporated at room-temperature in the dry box for 10 h, and was then dried at 110°C for 10 h under vacuum. A water-stable LISICON-type glass ceramic, Li_{1+x+y}Ti_{2-x}Al_xSi_yP_{3-y}O₁₂ (*x*-0.25, *y*~0.3, 150 µm thick), was supplied by Ohara Inc., Japan. To set up the multilayer water-stable Li electrode, the lithium metal with a Ni thin-film lead, the PEO₁₈-LiTFSI–BaTiO₃ composite polymer electrolyte, and the LISICON plate were sandwiched between two pieces of plastic films with low water and gas permeabilities. The cell was evacuated and heat sealed leaving a 5 x 5 mm area window on the LTAP plate.

Preparation of positive electrodes:

MnO₂ powder was prepared following previous reports.^[18,21] Fumaric acid (C₄H₄O₄, Aldrich) was added to a 0.2 M KMnO₄ solution (ultra pure water (> 18 M Ω cm)) in a 1:3 molar ratio while stirring. The resulting sol was degased for 30 min under moderate vacuum and after a few hours, a black gel formed. The gel was washed carefully and dried in air. X-ray diffraction patterns were identical to those reported. The specific BET surface area measured by N₂ gas sorption was 235 m² g⁻¹.

Figure S1. SEM images of MnO₂.

RuO₂·0.5H₂O powder was prepared according to literature.^[17] Slow controlled addition of a 0.3 M NaOH solution into 0.1 M RuCl₃·*x*H₂O solution resulted in precipitation of a black fine powder. The powder was washed thoroughly with ultra-pure water and collected by filtration. Then the powder was heat treated in air at 150°C for 17 h to obtain RuO₂·0.5H₂O. The capacitance of the material in 0.5 M H₂SO₄ (25°C) at 2 mV s⁻¹ was 650 F g⁻¹, in good agreement with literature.

RuO₂ nanosheets were prepared according to literature.^[22] α -NaFeO₂-structured NaRuO₂ was synthesized by heating a mixture of Na₂CO₃ and Ru and RuO₂ (2: 1: 3 molar ratio) at 900°C for 12 h under flowing Ar. The obtained product was treated with aqueous Na₂S₂O₈ to prompt oxidative partial de-intercalation of Na ions and then 1 M HCl to exchange the interlayer Na⁺ with H⁺, resulting in the formation of hydrated layered protonic ruthenate formulated as H_{0.2}RuO₂·0.5H₂O. Vigorous shaking (at least 10 days) of the acid-treated sample (0.1 g) in 25 cm³ of aqueous tetrabutylammonium hydroxide results in exfoliation of H_{0.2}RuO₂ · 0.5H₂O into RuO₂ nanosheets. The resultant dark-green suspensions were centrifugated at 2000 rpm for 30 min to separate the exfoliated nanosheets and the readily sedimenting materials.