Electronic Supplementary Information (ESI)

Control of spin-spin exchange interactions in polynitroxides through inclusion within γ-cyclodextrin

Mintu Porel,^a M. Francesca Ottaviani,^{b*} Steffen Jockusch,^c Nicholas J. Turro^{c*} and V. Ramamurthy^{a*}

^aDepartment of Chemistry, University of Miami, Coral Gables, Florida 33124, United States

^bDepartment of Earth, Life and Environmental Sciences (DiSTeVA), University of Urbino, 61029 Urbino, Italy

^cDepartment of Chemistry, Columbia University, New York, New York 10027, United States

Contents

	Content	Page #
Fig. S1	EPR titration spectra of T2 with γ-CD	S2
Fig. S2	EPR titration spectra of T3 with γ-CD	S2
Fig. S3	EPR spectra of T3 in solution at different temperatures	S3
Fig. S4	Arrhenius plot for T2 in γ-CD	S3
Fig. S5	Arrhenius plot for T3 in solution and γ-CD	S4

Fig. S1 EPR titration spectra of T2 with γ -CD; (a) [T2]/[γ -CD] = 1:0, (b) [T2]/[γ -CD] = 1:4 and [T2]/[γ -CD] = 1:20; [T2] = 0.1 mM at 295 K.

Fig. S2 EPR titration spectra of T3 with γ -CD; (a) [T3]/[γ -CD] = 1:0, (b) [T3]/[γ -CD] = 1:2, (c) [T3]/[γ -CD] = 1:4 and (d)) [T3]/[γ -CD] = 1:10; [T3] = 0.1 mM at 295 K.

Fig. S3 EPR spectra of T3 in 1:1 MeOH/water at different temperatures.

Fig. S4 Arrhenius plot for T2 in presence of 20 equivalent of γ -CD. ($t_b = t_{close}$; $t_a = t_{far}$)

Fig. S5 Arrhenius plot for T3 in (a) 1:1 MeOH/water and (b) in presence of 20 equivalent γ -CD. ($t_b = t_{close}$; $t_a = t_{far}$)