Supplementary material

Multifunctional Nanoparticles for Rapid Bacterial Capture, Detection, and Decontamination

Longyan Chen^a, Fereidoon S. Razavi^b, Abdul Mumin^a, Xiaoxuan Guo^c, Tsun-Kong Sham^c, and Jin Zhang^a*

1. XRD measure

Powder X-ray diffraction (XRD) measurement was performed at room temperature with a Rigaku Toraflex RTP 300 (45 kV, 160 mA) using Co K α (λ = 1.790260 Å) radiation. The scan range (2 θ) was from 13° to 70° with a step width of 0.02° 2 θ as shown in Fig S-1

Figure S-1. XRD profile of FMNPs.

2. Magnetic saturation of FMNPs

The produced FMNPs were measured by superconducting quantum interference devices (SQUIDs) under a field of 60K Oe at room temperature. The saturated magnetization is approaching to 40 emu/g as shown in the Fig. S-2.

Figure S-2. Hysteresis loop of FMNPs measured at room temperature with magnetic field of 60K Oe.

For the core-shell structure of FMNPs, the average diameter of iron oxide core is estimated at 50 ± 8 nm, while the thickness of silica shell is about 10 ± 5 nm. The mean particle size is approximately 65 ± 8 nm. Therefore, it is 46% in volume ratio can contribute to the magnetic properties of FMNPs. It is noted that the densities of SiO₂ NPs, Fe₃O₄NPs, and Fe₂O₃ NPs are 2.65 g/cm³, 4.95 g/cm³, and 5.2 g/cm³, respectively. Assuming the magnetic core was Fe₂O₃, it is estimated that ~62.5 wt% of the FMNPs contribute to the magnetic properties. Assuming the magnetic core are pure Fe₃O₄, it is estimated that ~61.2 wt% of the FMNPs contributes to the magnetic properties. Our calculation indicates that the saturated magnetization is about 65.4 emu/g. It is noted that the *M_s* of pure magnetite Fe₃O₄ is about 65 emu/g, which is 2.5 times of Fe₂O₃ NPs [1]. Consequently, the core of FMNPs is made of Fe₃O₄, which is also confirmed by the results of X-ray absorption near edge structure spectroscopy (XANES) as discussed in our manuscript.

3. Determine the concentration of gentamicin on the FMNPs

To determine the amount of Gm conjugated on FMNPs, o-phthalalehyde (OPA) is labeled with Gm as discussed in previous reports [2-3]. The amount of Gm conjugated on FMNPs was labeled

with o-phthalalehyde (opa) which has the fluorescent emission at 450 nm, and absorption at 292 nm. The optical signals *vs*. the concentration (μ g/mL) of OPA is as shown in Fig. S-2.

Figure S-3. UV-vis spectra of o-phthalalehyde (OPA) with different concentration.

Table S-1. Absorption values at 292 nm of	OPA-labeled Gm-FMNPs.
---	-----------------------

UV Absorption	OPA labeled Gm-FMNPs (fresh sample, 0.5 mg/mL)	OPA labeled Gm-FMNPs (sored for two months, 0.5 mg/mL)
I (em)	2.44	2.15

The products were washed several times followed by the 1 min ultrasound bath at room temperature to make sure that there is no free OPA in the final products. Our results indicate that 40 μ g of Gm can be conjugated onto 0.5mg FMNPs, that is, there is about 8 μ g of Gm

conjugated onto 0.1 mg FMNPs. The decrease of absorption intensity after storing for 2 months is caused by the decay of the OPA with time.

References

[1] Clauter DA and Schmidt VA. Shifts in blocking temperature spectra for magnetite powders as a function of grain size and applied magnetic field. Phys. Earth & Planetary 1981;26: 81-92.

[2] Al-Amoud AI, Clark BJ, and Chrystyn H, Determination of gentamicin in urine samples after inhalation by reversed-phase high-performance liquid chromatography using pre-column derivatisation with o-phthalaldehyde. J Chromatogr B 2002;769: 89–95.

[3] Ramos Fernández JM, García Campaña AM, Alés Barrero F, and Bosque Sendra JM. Determination of gentamicin in pharmaceutical formulations using peroxyoxalate chemiluminescent detection in flow-injection analysis. Talanta 2006;69: 763–768.