SUPPLEMENTAL INFORMATION

SUPPLEMENTAL DATA

Table S1: Related to Figure 4. DnaA screen for divalent cations and nucleotides. Concentration of reagents, T_m and $F_{fold30-75}$.

Reagent	Conc	T_m (±SEM)	$F_{fold35-75}$
	mМ	°C	(±SEM)
ATP	5	44.7 (0.2)	0.19 (0.10)
ADP	5	40.5 (0.0)	0.01 (0.01)
AMPPNP	5	42.5 (0.0)	0.02 (0.01)
MgCl ₂	10	51.8 (0.1)	0.10 (0.04)
MnCl ₂	10	40.5 (0.3)	0.06 (0.03)
MgCl ₂ /ATP	10/5	55.2 (0.2)	0.03 (0.01)
MgCl ₂ /ADP	10/5	53.0 (0.0)	0.03 (0.01)

 $F_{fold30-75}$ represents residual fluorescence after a melting curve protocol (30-75°C).

Reagent	RFU _{initial}	Reagent	RFU_{initial}
ATP	4,420	MgCl ₂	4,620
ADP	4,500	$MnCl_2$	4,100
AMP-PNP	3,830	CaCl ₂	4,250
cAMP	3,780	ZnSO ₄	4,000
GTP	4,630	NiCl ₂	1,430
GDP	4,080	CoSO ₄	140
dATP	4,275	CuSO ₄	780
dCTP	4,700	MgCl ₂ /ATP	4,730
dGTP	3,750	MgCl ₂ /ADP	4,650
dTTP	3,820	None	2,270

Table S2: Related to Figure 4. Effects of nucleotides and divalent cations on DnaA-GFPinitial fluorescence.

Reactions were spiked with 5 mM of nucleotides or 10 mM of divalent cations. RFU_{initial} correspond to

fluorescence at 35°C.

SUPPLEMENTAL FIGURE LEGEND

Figure S1: Related to Figure 2 and 3. Effect of increasing concentrations of ligands on the T_m of GK-GFP and Tus-GFP and graphical determination of K_{obs} . GK-GFP (2.5 μ M in phosphate buffer pH 7.8) with increasing glycerol (1-1024 μ M, grey triangles) or ATP (5-5120 μ M, grey circles) concentrations. Tus-GFP (2.5 μ M) with increasing concentrations of *TerB* (0.16-10 μ M) in buffer D + 250 mM KCl at pH 7.5 (black circles) and pH 7.8 (black squares), and in phosphate buffer at pH 5.9 (open circles), 7.8 (black triangles) and 9.4 (black diamonds). POI-GFP were incubated at RT for 15 min with ligands. K_{obs} was obtained by linear regression and extrapolation of the linear portion of the curve and is defined as the concentration value at $\Delta Tm = 0$. CI: confidence intervals of the K_{obs} .

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

GFP cloning vectors

pET-GFP was used for cloning of RdRp-GFP, DnaG-GFP, DnaA-GFP, SSB-GFP and DnaQ-GFP harboring a N-terminal his₆-tag following a previously described strategy.^{1, 2} An alternative vector pCC-Tus derived from pET20b(+) was used to produce HPR-GFP and GroES-GFP with a C-terminal his₆ tag.² Briefly, PCR products encoding HPR or GroES were ligated into pCC-Tus using NdeI and NheI to produce pCC-HPR-Tus and pCC-GroES-Tus. A GFP sequence derived from pET-GFP lacking a stop codon was then inserted into these vectors to yield pCC-HPR-GFP and pCC-GroES-GFP.

<i>Genbank #</i> Protein	Forward Primer	Reverse Primer	Restriction sites
RdRp	CATATGCTC <u>GATATC</u> ATGGATGTCATT GGGGAAAG	CCG <u>CTTAAG</u> CGCCCAAATGGCTCCCTCCG	EcoRV/AflII
SSB	AAAAAA <u>GATATC</u> GCCAGCAGAGGCGTA AACAAGG	AAAAAA <u>GCTAGC</u> GAACGGAATGTCATCATCAAAGTCCAT C	EcoRV/NheI
DnaA*	AAAAAA <u>CTTAAG</u> TCACTTTCGCTTTGG CAGCAGTGTC	AAAAAA <u>GCTAGC</u> CGATGACAATGTTCTGATTAAATTTG	AflII/NheI
HPR	AAAAAA <u>CATATG</u> AAGACCGTGGGCGAT AAACTCGAAG	AAAAAA <u>GCTAGC</u> CAGCGTCGCGCCGCCGATCG	NdeI/NheI
GroES	AAAAAA <u>CATATG</u> AGCCTACGCCCGCTA CACG	AAAAAA <u>GCTAGCG</u> GAATGTACGACTGCGACGATGTCC	NdeI/NheI
DnaQ	AAAA <u>CTTAAG</u> CGCCAGATCATTCTCGA TAC	AAAA <u>GCTAGC</u> AGCCTCGCCGACCGCCTC	AflII/NheI
DnaG	AAAAA <u>CTTAAG</u> ATTCCGCATTCGTTCC TGC	AAAAA <u>GCTAGC</u> CAGCCCGAGCCTCCGTTTC	AflII/NheI

Table S3: Oligonucleotides for PCR amplification of genes of interest and restriction sites

*: DnaA sequence contained one mutation (P18S) compared to wildtype.

Protein expression and purification

Except for DnaA-GFP and SSB-GFP, the POI-GFP were expressed in *E. coli* BL21(*DE3*)RIPL in Overnight Express Instant TB Medium (Novagen) at 16°C until OD reached a maximum. Cells were lysed by French press in lysis buffer (50 mM phosphate (pH 7.8), 2 mM β -mercaptoethanol, 300 mM NaCl) in the presence or absence of 10% glycerol (v/v), and the lysate was cleared by centrifugation at 40,000 g for 35 min. Except for SSB-GFP, all POI-GFP were purified with Ni-charged resin Profinity IMAC (Bio-Rad) following a previously described strategy.¹ After ammonium sulfate precipitation the POI-GFP were resuspended either in buffer A2 (50 mM sodium phosphate (pH 7.8) and 2 mM β -mercaptoethanol), buffer A10 (buffer A with 10 mM β -mercaptoethanol), buffer B (buffer A2 + 10% v/v glycerol) or Buffer C (50 mM HEPES-KOH (pH 7.6), 1 mM EDTA, 20 % sucrose, 1 mM β -mercaptoethanol). Tus-GFP was also dialyzed in buffer D (50 mM Tris (pH 7.8), 0.1 mM EDTA, 0.2 mM β -mercaptoethanol) + 250 mM KCl.

DnaA-GFP was expressed in *E. coli* KRX cells (Promega). Cells were grown in LB medium with ampicillin (100 µg/ml) at 25°C and 230 rpm until OD reached 1.8 at which point the temperature was dropped to 16 \degree C and rhamnose was added to a final concentration of 0.1%. Cultures were grown overnight and harvested by centrifugation at 4,000 rpm for 30 minutes. The cell pellets were resuspended at 7 ml/g of cells in ice cold buffer C + (300 mM KCl, 20 mM spermidine and 10 mM MgCl₂) and lysed by two French press passages at 12,000 psi. The lysate was cleared by centrifugation at 40,000 *g* for 35 min and purified

with Ni-charged resin Profinity IMAC. The column was washed with buffer Ni (buffer C + (300 mM KCl and 10 mM imidazole)) and DnaA-GFP was eluted in buffer Ni + 200 mM imidazole. After ammonium sulfate precipitation DnaA-GFP was resuspended in buffer C. SSB-GFP was also expressed in *E. coli* KRX cells following the same procedure as for DnaA-GFP. After centrifugation, cells were resuspended into 50 mM Tris (pH 8), 1 mM EDTA, 0.2 M NaCl, 10 % sucrose (w/v) and 15 mM spermidine trichloride. The cell lysate was precipitated with 0.15 g/ml AS and the pellet was resuspended in buffer E (20 mM Tris pH 8, 0.5 M NaCl, 1 mM EDTA, 1 mM β -mercaptoethanol, and 10 % glycerol (v/v)).

The purity of all proteins was assessed by SDS-PAGE (NEXT-GEL Amresco) and their concentrations by Bradford assay.

DNA and RNA ligands

Oligonucleotides were obtained from Sigma, diluted in either 10 mM Tris-HCl (pH 8) mM EDTA and 50 mM KCl (TE50) or 20 mM Tris (pH 8) and 150 mM NaCl (T150). Hybridization was performed by heating complementary oligonucleotides at 75-80°C for 2-5 min followed by slow cooling of complementary pairs of oligonucleotides (see following sections for sequence details).

Determination of K_{obs} of GK-GFP for ATP and glycerol.

 T_m were obtained for GK-GFP samples containing glycerol (1-1024 μ M) or ATP (5-5120 μ M) and plotted against the log[ligand]. K_{obs} was obtained by linear regression and

extrapolation of the linear portion of the curve and is defined as the concentration value at $\Delta Tm = 0$. At least four consecutive linear data points were required over one log to use this system for curve fitting and K_{obs} determination.

DnaA-GFP binding

The reactions containing DnaA-GFP (2.5 μ M) in buffer C with different additives (see Table S1 for concentrations) were subjected to a melting curve protocol with a scan range of 30-75°C set at 0.5°C increments and a dwell time of 30 s.

The effect of DNA-binding to an ATP-DnaA box was also determined in the presence of ATP and MgCl₂. The ATP-DnaA box DNA (*oriC*, 100 μ M) was obtained by hybridizing in buffer TE50 stoichiometric amounts of 5'-CCGGCTTTTAAGATCAACAACCTGGAAAGGATCA-3' and 5'-TGATCCTTTCCAGGTTGTTGATCTTAAAAGCCGG-3'. The *oriC* DNA was diluted in buffer C to a final concentration of 9 μ M. Equal volumes of DnaA-GFP (7.5 μ M in buffer C), additives (15 mM for nucleotides or/and 30 mM for divalent cations in buffer C) and *oriC* (9 μ M) were mixed and incubated for 10 min at RT. For reference experiments without DNA, the fraction of TE50 in these reactions was kept identical as for reactions containing DNA.

Effect of pH and ionic strength on stability of free and Ter-bound Tus-GFP and GFP

Oligonucleotides JCU99 (5'-AATAAGTATGTTGTAACTAAAGTGGGGGGGGGGGG-3') and JCU100 (5'-CCCCGCCCCCACTTTAGTTACAACATACTTATT-3'), or JCU100 and JCU140 (5'-

TATGTTGTAACTAAAGTGGGGGGGGGGGGG3') were hybridized in stoichiometric amounts in buffer T150 (50 μM final concentration) to obtain *TerB* and *Ter-lockB* respectively.

Equal volumes of Tus-GFP (50 μ M in buffer B) and DNA (50 μ M of *TerB* or *Ter-lockB*) or T150 were incubated for 15 min at RT. GFP (50 μ M in buffer B) was mixed with T150 (1:1). Reactions (6 μ l) were diluted in 54 μ l buffer B + 250 mM NaCl at varying pH to obtain final pH values ranging from 4-12. For melting curves, the scan range was 35-80°C at 0.5°C increment with a dwell time of 30 s. The effect of pH on the T_m of *TerB* was also determined in the same conditions as for Tus-GFP (pH range: 4-12) with the exception that the reaction buffer contained SYBR green. To determine the K_{obs} of different *TerB*:Tus-GFP ratios, Tus-GFP was incubated with *TerB* as described above, however concentrations of *TerB* in T150 were altered so that the *TerB*:Tus-GFP ratio ranged from 1:16-2:1 keeping Tus-GFP constant at 2.5 μ M final concentration. The T_m were determined at final pH of 5.9, 7.8 and 9.4. Both T_m and the height of the peaks were analyzed.

The effect of increasing concentrations of KCl on DNA binding of Tus-GFP was determined in buffer D (50 mM Tris (pH 7.5), 0.1 mM EDTA, 0.2 mM β -mercaptoethanol containing KCl ranging from 8.5-350 mM). Each reaction contained 2.5 μ M of Tus-GFP and 3 μ M of *TerB*, *Ter-lockB*, *oriC* or *oriC-lock*. The *oriC-lock* was obtained by hybridizing in buffer TE50 stoichiometric amounts of 5'-TTTAAGATCAACAACCTGGAAAGGATCA-3' and 5'-TGATCCTTTCCAGGTTGTTGATCTTAAAAGCCGG-3'. Reactions were incubated 10 min at RT prior melting curves were started. Reference experiments of Tus-GFP without DNA were also done in identical buffer conditions.

Concentration dependence of TerB on Tus-GFP and determination of Kobs

Reactions contained Tus-GFP at 2.5 μ M and *TerB* at various concentrations ranging from 0.16-10 μ M. Reactions were carried-out in buffer D + 250 mM KCl at pH 7.5 and 7.8 as well as in the various phosphate buffer conditions described above (pH 5.9, 7.8 and 9.4). The *K*_{obs} of Tus-GFP for *TerB* and buffer D + 250 mM KCl (pH 7.5 and 7.8) were obtained using the same strategy as for GK-GFP (described above).

RdRp-GFP binding

RdRp-GFP stock was in buffer A10 (145 μ M). All reactions contained 20 μ l of RdRp-GFP solution at 2.5 μ M final concentration and were prepared by mixing three volumes of RdRp-GFP diluted in buffer A10 or buffers A10 + glycerol (5% to 40%) with one volume of additive (in water). NaCl and (NH₄)₂SO₄ at final concentrations of 100 mM, 300 mM or 500 mM and their combined effects were tested. The effects of ZnSO₄, MgSO₄ and EDTA at final concentrations ranging from 0.001 to 1 mM were tested in the presence of 7.5% of glycerol and 100 mM (NH₄)₂SO₄. The effects of ATP, GTP, GDP, cAMP and AMPPNP each at a final concentration of 1 mM were tested without glycerol.

For melting curves, the scan range was 35-75°C set at 0.5°C increments and a dwell time of

30 s.

REFERENCES

- 1. M. J. J. Moreau, I. Morin and P. M. Schaeffer, *Mol. Biosyst.*, 2010, **6**, 1285-1292.
- 2. I. Morin and P. M. Schaeffer, *Anal. biochem.*, 2012, **420**, 121-126.