Synthesis, Photoconductivity and Self-Assembly of Cu₂Cd_xZn_{1-x}SnS₄ Nanorods

Karthik Ramasamy, Xiaoyan Zhang, Robert D. Bennett and Arunava Gupta*

Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35487, United States

Contents:

imulation details	52
igure S1	S3
igure S2	54
Cable S1	S4
igure S3	55
igure S4S	56
igure S5S	57
igure S6S	58

Simulation details

Crystal data:

Formula: Cu ₂ ZnSnS ₄	Crystal Structure: Wurtzite
Space Group: <i>P</i> 63mc (No. 186)	Lattice Parameters: $a = b = 3.825$ Å, $c = 6.318$ Å
Formula: Cu ₂ CdSnS ₄	Crystal Structure: Wurtzite
Space Group: P63mc (No. 186)	Lattice Parameters: $a = b = 3.925$ Å, $c = 6.450$ Å

The structure of wurtzite $Cu_2Cd_xZn_{1-x}SnS_4$ can be obtained from wurtzite ZnS by substitution of Zn(II) with Cu(I), Zn(II)/Cd(II) and Sn(IV). The sulfur ion positions remain the same, being equally coordinated with Cu(I), Zn(II)/Cd(II) and Sn(IV). In the crystal structure, Cu, Zn/Cd and Sn ions statistically occupy the same position, with the occupation for each ion being 50%, 25% and 25%. Since the standard XRD patterns for wurtzite Cu₂ZnSnS₄ and Cu₂CdSnS₄ are not available in the database, we simulated the diffraction pattern.

Figure S1. X-ray diffraction patterns of Cu₂ZnSnS₄ and Cu₂CdSnS₄. Solid lines are corresponding simulated wurtzite patterns.

Figure S2. EDX spectrum of $Cu_2Cd_{0.5}Zn_{0.5}SnS_4$ nanorods.

Table S1. EDX data, band gaps, lattice constants, aspect ratio and *d*-spacing values of $Cu_2Cd_xZn_{1-x}SnS_4$ nanorods.

Samples	EDX Data (%)	Band	Lattice	Aspect	d-
		gaps	constants (a):	ratio	spacing
	Cu : Cd : Zn : Sn : S	(eV)	(c) (Å)		(Å)
Cu ₂ ZnSnS ₄	25.9 : 0 : 13.5 : 14.5 : 46.1	1.39	3.820 : 6.280	1.35	3.15
$Cu_2Cd_{0.25}Zn_{0.75}SnS_4$	25.5:3.2:11.1:13.8:46.4	1.41	3.855 : 6.370	1.53	3.20
$Cu_2Cd_{0.50}Zn_{0.50}SnS_4$	25.3 : 7.2 : 6.9 : 14.2 : 46.4	1.46	3.870 : 6.373	1.80	3.22
$Cu_2Cd_{0.75}Zn_{0.25}SnS_4$	26.1 : 11.5: 2.8 : 14.6 : 45.0	1.52	3.920 : 6.421	2.80	3.28
Cu ₂ CdSnS ₄	25.8:14.2:0:15.1:44.9	1.56	3.925 : 6.450	3.00	3.32

Figure S3. XPS survey spectrum of Cu₂Cd_{0.5}Zn_{0.5}SnS₄ nanorods.

Figure S4. UV-Vis spectra of $Cu_2Cd_xZn_{1-x}SnS_4$ nanorods in hexane with different *x* values.

Figure S5. Low and high magnification SEM images of Cu₂Cd_{0.5}Zn_{0.5}SnS₄ nanorod assembly (assembled using hexane and ethanol).

Figure S6. SEM images of nanorod assembly (assembled using hexane and ethanol): (a) Cu₂ZnSnS₄, (b) Cu₂Cd_{0.25}Zn_{0.75}SnS₄, (c) Cu₂Cd_{0.75}Zn_{0.25}SnS₄, and (d) Cu₂CdSnS₄.