Supporting Information

Nano-MgO-ZrO₂ Mixed Metal oxides: Characterization by SIMS and application in the reduction of carbonyl compounds and in multicomponent reactions

Manoj B. Gawande,^{*a} Anuj K. Rathi,^b Paula S. Branco,^a T. M. Potewar,^a Alexandre Velhinho,^c Isabel D. Nogueira,^d A. Tolstogouzov,^e C. Amjad A. Ghumman,^e and Orlando M.N.D. Teodoro^e

^a Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, 2829–516 Caparica, Portugal Email- mbgawande@yahoo.co.in, m.gawande@fct.unl.pt Tel - +351-964223243, Fax: +351 21 2948550, Tel: +351 21 2948300 ^bJubilant Chemsys Ltd. B-34, Sector-58, Noida-201301, New Delhi (India) ^cCENIMAT/I3N Departmento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal ^dInstituto de Ciencia e Engenharia de Materiais e Superficies IST, Lisbon ,Portugal

^eCentre for Physics and Technological Research (CeFITec), Department of Physics, Faculty of Science and Technology, Universidade Nova de Lisboa, 2829–516 Caparica, Portugal

Experimental

All commercial reagents were used as received unless otherwise mentioned. For analytical and preparative thin-layer chromatography, Merck, 0.2 mm and 0.5 mm Kieselgel GF 254 percoated were used, respectively.

Synthesis of Nano-MgO-ZrO₂

In continuation of our interest to explore the utility of MgO-ZrO₂ catalyst in organic synthesis, we have successfully prepared MgO-ZrO₂ catalyst, by Ultra dilution method as described below.

In a typical experiment, for the preparation of MgO-ZrO₂ an appropriate amount of magnesium nitrate $[Mg(NO_3)_2.6H_2O]$ (3.10 g) and zirconium oxychloride $[ZrOCl_2.8H_2O]$ (8.11 g) were dissolved together in 2 L flask with 1 L deionized water. Dilute ammonia solution was added drop wise with vigorous stirring (RPM- 5,000) until the precipitation was complete (around 6 to 8 h and pH= 10.0). The resultant precipitate was filtered and washed with distilled water till free from chloride ions. The residue was dried for 24 h at 383 K in an oven and the obtained precipitate of metal hydroxides heated in porcelain crucible progressively to 873 K for 10 h.

Catalyst characterization

After calcinations, the catalyst was characterized by various analytical and spectroscopic techniques. The X-ray powder diffraction pattern was obtained using a conventional powder diffractometer (Philips 1050) using graphite monochromatized Cu-K α radiation operating in Bragg-Brentano ($\theta/2\theta$) geometry. Transmission Electron Microscopy (TEM) experiments were performed on a Hitachi 8100 microscope with Rontec standard EDS detector and digital image acquisition. All samples were prepared by evaporating dilute suspensions on carbon-coated film. To produce a plain and conductive sample suitable for SIMS analysis, the powder catalyst was pressed onto an ultra-pure indium foil by Goodfellow (Huntingdon, UK). We used a manual toggle pressing machine by Brauer (Milton Keynes, UK). TOF-SIMS analysis was performed by acquiring positive and negative secondary ion spectra in the mass range of 0.5-200 m/z with an upgraded VG Ionex IX23LS TOF-SIMS set-up based on the Poschenrieder design.²⁸⁻²⁹ A focused liquid Ga⁺ gun in the pulsed mode (6 kHz/ 40 ns) was used as a

source of the analysis ions. A beam current in the continuous mode at 14 keV was ca. 15 nA with a raster size of $300 \times 300 \ \mu\text{m}^2$ (128×128 pixels, 10 kHz). The sample potential was ± 5 kV. Vacuum during the experiments was maintained in the range of (2-3)×10⁻⁹ mbar in the analytical chamber.

TEM of MgO-ZrO₂ –

The TEM Image of MgO- ZrO_2 is depicted below, clearly indicates the particles are in the Nano size range (20 nm -35 nm) (Figure 1).

Fig. 1 TEM image of MgO-ZrO₂ at 100 nm