Supporting Information

Removal of SO₂ by a Mixture of Caprolactam Tetrabutyl Ammonium Bromide Ionic Liquid and

Sodium Humate Solution

Yu Zhao, Guoxin ${\rm Hu}^{*}$

School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200240, China

* Corresponding author phone/fax: +86-21-34206569; E-mail: hugx@sjtu.edu.cn.

Summary: Page S2: Figure S1 Page S2: Figure S2 Page S3: Figure S3 Page S3: Figure S4

Fig.S2 XPS survey spectra of desulfurization products.

Fig.S3 The absorption spectra of rhodamine-based fluorescent probe $(50\mu molL^{-1})$ in water-ethanol (90/10, v/v) buffered at pH4.8 upon mixing with desulfurization supernatant before and after absorbing SO₂.

Fig.S4 The Photo of A. HA-Na & IL solution; B. desulfurization liquid; C. SHA compound fertilizer; and D. Na₂SO₄.