Functionalized 3-Pyrrolyl Boron-Dipyrromethenes

Tejinder Kaur, Vellanki Lakshmi and Mangalampalli Ravikanth*

Department of Chemistry, Indian Institute of Technology Bombay, Powai,

Mumbai 400 076, India. E-mail: ravikanth@chem.iitb.ac.in

1.	HRMS mass spectrum of compound 4	S 1
2.	¹ H NMR spectrum of compound 4	S2
3.	¹⁹ F NMR spectrum of compound 4	S3
4.	¹¹ B NMR spectrum of compound 4	S3
5.	¹³ C NMR spectrum of compound 4	S4
6.	HRMS mass spectrum of compound 5	S5
7.	¹ H NMR spectrum of compound 5	S6
8.	¹⁹ F NMR spectrum of compound 5	S7
9.	¹¹ B NMR spectrum of compound 5	S 8
10.	¹³ C NMR spectrum of compound 5	S9
11.	HRMS mass spectrum of compound 6	S10
12.	¹ H NMR spectrum of compound 6	S11
13.	19 F NMR spectrum of compound 6	S12
14.	¹¹ B NMR spectrum of compound 6	S13
15.	¹³ C NMR spectrum of compound 6	S13
16.	HRMS mass spectrum of compound 7	S14
17.	¹ H NMR spectrum of compound 7	S15
18.	¹ H- ¹ H COSY NMR spectrum of compound 7 recorded in CDCl ₃	S16
19.	¹⁹ F NMR spectrum of compound 7	S17
20.	¹¹ B NMR spectrum of compound 7	S18
21.	¹³ C NMR spectrum of compound 7	S18

22.	HRMS mass spectrum of compound 8	S19
23.	¹ H NMR spectrum of compound 8	S20
24.	¹⁹ F NMR spectrum of compound 8	S21
25.	¹¹ B NMR spectrum of compound 8	S22
26.	¹³ C NMR spectrum of compound 8	S22
27.	HRMS mass spectrum of compound 10	S23
28.	¹ H NMR spectrum of compound 10	S24
29.	¹⁹ F NMR spectrum of compound 10	S25
30.	¹¹ B NMR spectrum of compound 10	S25
31.	¹³ C NMR spectrum of compound 10	S26
32.	HRMS mass spectrum of compound 11	S27
33.	¹ H NMR spectrum of compound 11	S28
34.	¹⁹ F NMR spectrum of compound 11	S29
35.	¹¹ B NMR spectrum of compound 11	S30
36.	¹³ C NMR spectrum of compound 11	S30
37.	HRMS mass spectrum of compound 12	S31
38.	¹ H NMR spectrum of compound 12	S32
39.	¹⁹ F NMR spectrum of compound 12	S33
40.	¹¹ B NMR spectrum of compound 12	S34
41.	¹³ C NMR spectrum of compound 12	S35
42.	HRMS mass spectrum of compound 13	S36
43.	¹ H NMR spectrum of compound 13	S37
44.	¹⁹ F NMR spectrum of compound 13	S38
45.	¹¹ B NMR spectrum of compound 13	S38
46.	¹³ C NMR spectrum of compound 13	S39
47.	HRMS mass spectrum of compound 15	S40

48.	¹ H NMR spectrum of compound 15	S41
49.	¹⁹ F NMR spectrum of compound 15	S42
50.	¹¹ B NMR spectrum of compound 15	S43
51.	¹³ C NMR spectrum of compound 15	S44
52.	HRMS mass spectrum of compound 16	S45
53.	¹ H NMR spectrum of compound 16	S46
54.	¹⁹ F NMR spectrum of compound 16	S47
55.	¹¹ B NMR spectrum of compound 16	S48
56.	¹³ C NMR spectrum of compound 16	S49
57.	Comparison of normalized absorption spectra of compounds 2-15	S50
58.	Comparison of normalized emission spectra of compounds 2-15	S50
59.	Comparison of the first reduction cyclic voltammograms of compounds 2-13	S51
60.	Decay profile and weighted, residual, distribution fit of compound 2 along with compounds 4-8	S52
61.	Decay profile and weighted, residual, distribution fit of compound 2 along with compounds 10-16	S53

Figure 1: HRMS mass spectrum of compound 4

Figure 2: ¹H NMR spectrum of compound 4 recorded in CDCl₃

Figure 3: ¹⁹F NMR spectrum of compound 4 recorded in CDCl₃

Figure 4: ¹¹B NMR spectrum of compound 4 recorded in CDCl₃

Figure 5: 13 C NMR spectrum of compound 4 recorded in CDCl₃ (δ in ppm)

Figure 6: HRMS mass spectrum of compound 5

Figure 7: ¹H NMR spectrum of compound 5 in the selected region recorded in CDCl₃.

Figure 8: ¹H NMR spectrum of compound 5 recorded in CDCl₃.

Figure 9: ¹⁹F NMR spectrum of compound 5 recorded in CDCl₃

Figure 10: ¹¹B NMR spectrum of compound 5 recorded in CDCl₃

Figure 11: ¹³C NMR spectrum of compound **5** recorded in CDCl₃ (δ in ppm)

Figure 12: HRMS mass spectrum of compound 6

Figure 13: ¹H NMR spectrum of compound 6 in the selected region recorded in CDCl₃

Figure 14: ¹H NMR spectrum of compound 6 recorded in CDCl₃

Figure 15: 19 F NMR spectrum of compound 6 recorded in CDCl₃

Figure 16: ¹¹B NMR spectrum of compound 6 recorded in CDCl₃

Figure 17: ¹³C NMR spectrum of compound 6 recorded in CDCl₃

Elemental Composition Report Page 1 Single Mass Analysis (displaying only valid results) Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0% Monoisotopic Mass, Odd and Even Electron lons 1783 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Micromass : Q-Tof micro (YA-105) Dept. Of Chern C19H14BF2N4O2 MRK-TEJI-NO2 34 (0.338) AM (Med,5, Ht,5000.0,556.28,1.00); Cm (2:35) 379.1182 Dept. Of Chemistry I.I.T.(B) 28-Nov-201113:01:00 TOF MS ES+ 1.04e4 359.1147 % 378.1266 380.1263 412.0491 358,1211 333.1302 356.1507 .360.1217 411.0498 415.0511 468.2603485.0534 491.9583 _361.1170 394.0429 434.0341 452.0110 .)]]](..., 0-+++ m/z لىلد 480 490 340 350 360 370 380 390 400 410 420 430 440 450 460 470 -1.5 100.0 Minimum: 200.0 5.0 Maximum: Mass Calc. Mass PPM DBE Score Formula mDa 379.1182 379.1178 0.4 1.2 14.5 1 C19 H14 B N4 O2 F2

Figure 18: HRMS mass spectrum of compound 7

Figure 19: ¹H NMR spectrum of compound 7 recorded in CDCl₃. The inset shows ¹H NMR spectrum in selected region.

Figure 20: ¹H-¹H COSY NMR spectrum of compound 7 recorded in CDCl₃

Figure 21: ¹⁹F NMR spectrum of compound 7 recorded in CDCl₃ (δ in ppm)

Figure 22: ¹¹B NMR spectrum of compound 7 recorded in CDCl₃

Figure 23: ¹³C NMR spectrum of compound 7 recorded in CDCl₃ (δ in ppm)

Figure 24: HRMS mass spectrum of compound 8

Figure 25: ¹H NMR spectrum of compound 8 in the selected region recorded in $CDCl_3$ (δ in ppm)

Figure 26: ¹H NMR spectrum of compound 8 recorded in CDCl₃

Figure 27: ¹⁹F NMR spectrum of compound **8** recorded in CDCl₃ (δ in ppm)

Figure 28: ¹¹B NMR spectrum of compound 8 recorded in CDCl₃

Figure 29: ¹³C NMR spectrum of compound 8 recorded in CDCl₃

Figure 30: HRMS mass spectrum of compound 10

Figure 31: ¹H NMR spectrum of compound 10 in the selected region recorded in CDCl₃

Figure 32: ¹H NMR spectrum of compound 10 recorded in CDCl₃

Figure 33: ¹⁹F NMR spectrum of compound 10 recorded in CDCl₃

Figure 34: ¹¹B NMR spectrum of compound **10** recorded in CDCl₃ (δ in ppm)

Figure 35: ¹³C NMR spectrum of compound **10** recorded in CDCl₃ (δ in ppm)

Figure 36: HRMS mass spectrum of compound 11

Figure 37: ¹H NMR spectrum of compound 11 in the selected region recorded in CDCl₃

Figure 38: ¹H NMR spectrum of compound 11 recorded in CDCl₃

Figure 39: ¹⁹F NMR spectrum of compound 11 recorded in CDCl₃

Figure 40: ¹¹B NMR spectrum of compound 11 recorded in CDCl₃

Figure 41: ¹³C NMR spectrum of compound 11 recorded in CDCl₃

Elemental Composition Report Page 1									
Single Mass Analysis (displaying only valid results) Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%									
Monoisotopic Mass, Odd and Even Electron Ions 2487 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)									
Micromass : Q-Tof micro (YA-105) Dept. Of Chemistry I.I.T.(B) 18-Jan-201 C32H24BF2N3Q									
MR-TK-BIPH 2 (0.020) AM (Top,5, Ht,5000.0,556.28,1.00); Sm (Md, 6.00); Sb (5,40.00); Cm (1:27) TOF MS ES+									
%-		515.2106							
449.1669 455.1723 ^{459.0988} 471.1534 481.1 0 445 450 455 460 465 470 475 480	1366 496.183	0 510.1819 518.1959 503.1521 518.1959 00 505 510 515 520 525	538.1941 545.2144 531.1947 545.48.1978 530.535 540 545 550						
Minimum: Maximum: 200.0	-1.5 10.0 100.0								
Mass Calc. Mass mDa	PPM DBE	Score Formula							
516.2047 516.2059 -1.2	-2.3 21.5	1 C32 H25	N3 O F2 B						

Figure 42: HRMS mass spectrum of compound 12

Figure 43: ¹H NMR spectrum of compound 12 in the selected region recorded in CDCl₃

Figure 44: ¹H NMR spectrum of compound 12 recorded in CDCl₃

Figure 45: ¹⁹F NMR spectrum of compound 12 recorded in CDCl₃

Figure 46: ¹¹B NMR spectrum of compound 12 recorded in CDCl₃

Figure 47: ¹³C NMR spectrum of compound **12** recorded in CDCl₃ (δ in ppm)

Figure 48: HRMS mass spectrum of compound 13

Figure 49: ¹H NMR spectrum of compound 13 in selected region recorded in CDCl₃

Figure 50: ¹H NMR spectrum of compound 13 recorded in CDCl₃

Figure 51: ¹⁹F NMR spectrum of compound 13 recorded in CDCl₃

Figure 52: ¹¹B NMR spectrum of compound 13 recorded in CDCl₃

Figure 53: ¹³C NMR spectrum of compound 13 recorded in CDCl₃

Figure 54: HRMS mass spectrum of compound 15

Figure 55 : ¹H NMR spectrum of compound 15 recorded in CDCl₃.

Figure 56 : ¹⁹F NMR spectrum of compound 15 recorded in CDCl₃

Figure 57 : ¹¹B NMR spectrum of compound 15 recorded in CDCl₃.

Figure 58 : ¹³C NMR spectrum of compound 15 recorded in CDCl₃

Figure 59 : HRMS spectrum of compound 16 recorded in CDCl₃

Figure 60 : ¹H NMR spectrum of compound **16** recorded in CDCl₃.

Figure 61 : ¹H NMR spectrum of compound 16 in selected region recorded in CDCl₃ (δ in ppm).

Figure 62: ¹⁹F NMR spectrum of compound 16 recorded in CDCl₃.

Figure 63: ¹¹B NMR spectrum of compound 16 recorded in CDCl₃.

Figure 64 : ¹³C NMR spectrum of compound 16 recorded in CDCl₃

Figure 65: Comparison of normalized absorption spectra of (a) functionalized 3-pyrrolyl BODIPYs and (b) aryl substituted 3-pyrrolyl BODIPYs recorded in CHCl₃.

Figure 66: Comparison of normalized emission spectra of (a) functionalized 3-pyrrolyl BODIPYs and (b) aryl substituted 3-pyrrolyl BODIPYs recorded in CHCl₃ using $\lambda_{exc} = 488$ nm.

Figure 67: Comparison of the first reduction waves of cyclic voltammograms of compounds 2-13 at 50 mV s⁻¹ scan rate recorded in CH_2Cl_2 containing 0.1 M Tetrabutylammonium perchlorate as supporting electrolyte.

Figure 68: Fluorescence decay profile and weighted, residual, distribution fit of compounds2 along with 4-8 in chloroform. The excitation wavelength used was 560 nm collected at corresponding wavelengths.

Figure 69: Fluorescence decay profile and weighted, residual, distribution fit of compounds2 along with 10-16 in chloroform. The excitation wavelength used was 560 nm collected at corresponding wavelengths.