Supporting Information

A Naphthalimide-Quinoline based probe for selective, fluorescence ratiometric sensing of trivalent ions

Shyamaprosad Goswami^{*}, Krishnendu Aich, Avijit Kumar Das, Abhishek Manna and Sangita Das

Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103, West Bengal, India E-mail: spgoswamical@yahoo.com; Fax: +91-3326682916.

CONTENTS

 General procedure for drawing Job plot by fluorescence method Association constants and fluorescence titration curve of Sensor with M³⁺
3. Determination of detection limit
4. Metal ion selectivity profile of the sensor
5. ¹ H NMR (S5) and Mass spectra (S6) of receptor
6. Fluorescence titration spectra of receptor with different guest cations
7. UV-vis titration spectra of receptor with Fe^{3+} , Al^{3+} and Cr^{3+}
8. X-ray Crystallographic data

1. General procedure for drawing Job plot by fluorescence method:

Stock solution of same concentration of sensor and M^{3+} (where $M = Fe^{3+}$, Al^{3+} and Cr^{3+}) were prepared in the order of 20µM in [CH₃CN/ H₂O, 40/60, v/v] (at 25 °C) at pH 7.4 in HEPES buffer. The emission spectrum in each case with different *host–guest* ratio but equal in volume was recorded. Job plots were drawn by plotting $\Delta I.X_{host}$ vs X_{host} ($\Delta I =$ change of intensity of the emission spectrum at 390 nm during titration and X_{host} is the mole fraction of the host in each case, respectively).

Figure S1: Job's plot diagram of receptor for Fe^{3+} ion (where X_h is the mole fraction of the host and ΔI indicates the change of emission intensity at 390 nm)

Figure S2: Job's plot diagram of receptor for Al^{3+} ion (where X_h is the mole fraction of the host and ΔI indicates the change of emission intensity at 390 nm)

Figure S3: Job's plot diagram of receptor for Cr^{3+} ion (where X_h is the mole fraction of the host and ΔI indicates the change of emission intensity at 390 nm)

2. Association constant determination:

The binding constant value of M^{3+} (where $M = Fe^{3+}$, AI^{3+} and Cr^{3+}) with sensor has been determined from the emission intensity data following the modified Benesi–Hildebrand equation¹, $1/\Delta I = 1/\Delta I_{max} + (1/K[C]) (1/\Delta I_{max})$. Here $\Delta I = (I-I_{min})$ and $\Delta I_{max} = (I_{max}-I_{min})$, where I_{min} , I, and I_{max} are the emission intensities of sensor considered in the absence of M^{3+} , at an intermediate M^{3+} concentration, and at a concentration of complete saturation where K is the binding constant and [C] is the M^{3+} concentration respectively. From the plot of 1/ (I-I_{min}) against [C]⁻¹ for sensor, the value of K has been determined from the ratio of intercept and slope of Benesi-Hildebrand plot. As the plot of 1/ (I-I_{min}) vs 1/[C] gives a straight line, indicates the 1:1 complexation of the sensor with M^{3+} . The association constant (K_a) as determined by fluorescence titration method for sensor with Fe³⁺, AI^{3+} and Cr^{3+} are found to be 1.0852 x 10⁴ M⁻¹, 8.770 x 10³ M⁻¹ and 5.676 x 10³ M⁻¹ respectively (error $\pm 10\%$).

Figure S4: Benesi–Hildebrand plot from fluorescence titration data of receptor (20 μ M) with Fe³⁺.

Figure S5: Benesi–Hildebrand plot from fluorescence titration data of receptor (20 μ M) with Al³⁺.

Figure S6: Benesi–Hildebrand plot from fluorescence titration data of receptor (20 μ M) with Cr³⁺.

3. Determination of detection limit:

The detection limit (DL) of NAQ for Fe^{3+} , Al^{3+} and Cr^{3+} were determined from the following equation:

 $DL = K^* Sb1/S$

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

For Fe^{3+} :

From the graph we get slope = 16700.99, and Sb1 value is 0.115058 Thus using the formula we get the Detection Limit = 20 μ M i.e. NAQ can detect Fe³⁺ in this minimum concentration.

For Al^{3+} :

From the graph we get slope = 7.53E+03, and Sb1 value is 0.059735Thus using the formula we get the Detection Limit = $23 \mu M$ i.e. NAQ can detect Al³⁺ in this minimum concentration.

For Cr^{3+} :

From the graph we get slope = 2662.453, and Sb1 value is 0.022587 Thus using the formula we get the Detection Limit = 25 μ M i.e. NAQ can detect Cr³⁺ in this minimum concentration.

Figure S7: Metal ion selectivity profile of the receptor (20 μ M): (black bars) change of emission intensity of receptor + 10 equiv Mⁿ⁺; (blue bars) change of emission intensity of receptor + 10 equiv Mⁿ⁺, followed by 3 equiv Al³⁺ at 484 nm

Figure S8: Metal ion selectivity profile of the receptor (20 μ M): (black bars) change of emission intensity of receptor + 10 equiv Mⁿ⁺; (blue bars) change of emission intensity of receptor + 10 equiv Mⁿ⁺, followed by 3 equiv Cr³⁺ at 484 nm

S9: 1H NMR spectrum of NAQ

S10: Mass spectrum of NAQ.

Figure S11: Fluorescence titration spectra of receptor (20 μ M in CH₃CN/ H₂O, 40/60, v/v, HEPES buffer solution) with (0- 10 equiv.) of (a) Zn²⁺, (b) Hg²⁺, (c) Cd²⁺, (d) Fe²⁺,

(e) Co^{2+} , (f) Ni^{2+} , (g) Pb^{2+} , (h) Cu^{2+} , (i) Mn^{2+} , (j) Ba^{2+} , (k) Ca^{2+} , (l) K^+ , (m) Mg^{2+} , (n) Na^+ respectively.

Figure S12: UV-vis titration spectra of NAQ with (a) Fe^{3+} , (b) Al^{3+} and (c) Cr^{3+} (0 to 10 equivalents) in CH₃CN / H₂O (40/ 60, ν/ν , pH=7.4) solutions.

9. Crystallographic data and details of the structure determination of receptor (NAQ):

The data were collected using a Bruker-APEX II SMART CCD diffractometer with the graphite monochromated Mo-K α radiation ($\lambda = 0.71073$) at a detector distance of 5 cm and with APEX2 software. For data processing and absorption correction the packages SAINT¹ and SADABS² were used. The structures were solved by direct and Fourier methods and refined by full-matrix least squares based on F2 using SHELXTL³ and SHELXL-97⁴ packages. The crystallographic data and hydrogen bond geometry are

presented in Tables 1 and 2, respectively. Crystallographic data for receptor NAQ has been deposited with the Cambridge Crystallographic Data Center No. CCDC 888916.

		-
6	hlo	• •
Ia	DIC	1.

CCDC No	888916
Empirical Formula	ConHenNeO
Emplicar Formula	207.29
Crustel system	391.30
	Dhaa
Space group	P b c a
	296 K
	15.1430(4)
$b[\mathbf{A}]$	13.8141(4)
<i>c</i> [Å]	17.0179(5)
α [deg]	90
β [deg]	90
γ [deg]	90
Z	8
<i>V</i> [Å ³]	3559.92(17)
Dcalc [g/cm ³]	1.483
F [000]	1648.0
Crystal size [mm]	0.10 x 0.20 x 0.30
Theta min-max [deg]	2.3, 27.1
$\mu [\mathrm{mm}^{-1}]$	0.104
Reflections collected	34767
Unique reflections	3918
Observed reflections	2982
$R[F^2>2\sigma(F^2)]$	0.0394
$wR(F^2)$	0.1561
× /	

References:

(1) APEX-II, SAINT-Plus, and TWINABS; Bruker-Nonius AXS, Inc.: Madison, WI, 2004

(2) Sheldrick, G. M. SAINT, version 6.02 and SADABS, version 2.03; Bruker AXS, Inc.: Madison, WI, 2002.

(3) SHELXTL, version 6.10; Bruker AXS, Inc.: Madison, WI, 2002.

(4) Sheldrick, G. M. SHELXL-97, Crystal Structure Refinement Program; University of G€ottingen: Germany, 1997.