Photodecomposition of *N*-hydroxyurea in argon matrices. FTIR and theoretical studies

Magdalena Sałdyka

Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland E-mail: magdalena.saldyka@chem.uni.wroc.pl

Supplementary information: additional computational details

Figure S1 The optimized structures of the HNCO-NH₂OH complexes at the MP2/6-311++G(2d,2p) level of theory. The selected bond distances (in Å) and interaction energies ΔE^{CP} (in kJ mol⁻¹) are also presented; in parentheses the ΔE^{CP}_{ZPE} values (in kJ mol⁻¹) are given.

Property	А	В	С	D	Е
r(NH(C))	1.0241	1.0045	1.0050	1.0061	$1.0150 (1.0192)^b$
r(NC)	1.2166	1.2185	1.2198	1.2198	1.2172 (1.2166)
r(CO)	1.1757	1.1760	1.1745	1.1751	1.1754 (1.1761)
r(OH)	0.9641	0.9621	0.9604	0.9594	0.9600 (0.9632)
r(NO)	1.4407	1.4454	1.4478	1.4513	1.4518 (1.4467)
r(NH _a)	1.0123	1.0128	1.0122	1.0132	1.0143 (1.0177)
r(NH _b)	1.0123	1.0128	1.0122	1.0122	1.0123 (1.0153)
$r((N)H\cdots N), r((N)H\cdots O)$	1.9232	3.2185	3.0909	2.7444	1.9242 (1.8667)
$r((O)H\cdots N), r((O)H\cdots O),$	2.3446	2.1479	2.6151		
$r((N)H_a\cdots O), r((N)H_a\cdots N)$				2.5078	2.6362 (2.5684)
φ(HNC)	127.17	121.71	121.52	120.39	126.47 (126.90)
φ(OCN)	173.09	171.14	172.15	172.27	172.57 (172.58)
φ(NOH)	102.64	102.00	102.15	101.62	102.02 (102.14)
$\phi(H_aNO)$	104.33	103.64	103.81	103.68	103.83 (103.75)
φ(NH···N), φ(NH···O)	147.88	99.60	98.45	109.51	152.93 (153.08)
φ(OH…N), φ(OH…O)	131.08	152.62	107.92		
$\phi(NH_a\cdots O), \phi(NH_a\cdots N)$				140.43	121.11 (121.09)
θ (NH···NH _a), θ (NH···OH)	-110.57	123.58	0.01	-124.78	117.18 (116.27)
θ (OH···NH), θ (OH···OC)	0.00	0.02	0.00		
$\theta(NH_a\cdots OC), \theta(NH_a\cdots NH)$				7.48	9.08 (8.11)
a^{a} the interacting atoms refer to the Figure S1; the bond distances are given in Å, the angles in degrees.					

Table S1 Selected structural parameters^{*a*} calculated for the HNCO-NH₂OH complexes at the MP2/6-311++G(2d,2p) level of theory

^b the calculation performed at the aug-cc-pVTZ basis set.

JC	
rel (
lev	
2p)	
2d,2	
<u>G</u>	
Ť	
311	
6-3	
P2/	
Σ	
the	
at	
xes	
ple	
om	
Нc	
² OI	
H	
ö	
2 Z	
H	
the	
for	
eq	
ılat	
alcı	
) Cî	
п	
n c	
s (i	
nift	
s sł	
ber	
um	
/en	
vav	
p	
s ai	
ben	
um	
/eni	
Vav	
2	
e S	2
abl	eor
Ë	ţ

theory												
	Monomer	A		В		С		D		E		Assignment
	٨	٨	Δv	^	$\Delta \mathbf{v}$	^	$\Delta \mathbf{v}$	٨	$\Delta \mathbf{v}$	٧	$\Delta \mathbf{v}$	
HNCO	3722 (172) ^a	3324 (1218)	-398	3711 (152)	-11	3706 (160)	-16	3692 (163)	-30	3500(517)	-222	νNH
	2308 (668)	2311 (713)	б	2302 (636)	9	2305 (633)	4	2301 (613)	۲-	2311 (709)	ς	v _{as} NCO
	1289(0,1)	1292 (9)	ε	1289 (1)	0	1287 (0,3)	-2	1287 (0)	-2	1293 (7)	4	v _s NCO
	813 (238)	972 (398)	159	820 (291)	٢	831 (270)	18	842 (270)	29	898 (501)	85	<i>SHNC</i>
	630 (0,3)	742 86)	112	629 (2)	٦	628 (2)	-2	631 (0)	1	670 (20)	40	γNCO
	575 (75)	656 (10)	81	559 (76)	-16	564 (77)	-11	560 (80)	-15	641 (22)	99	δNCO
NH ₂ OH	3872 (53)	3795 (134)	-77	3828 (139)	-56	3858 (63)	-14	3869 (60)	ę	3865 (73)	L-	HOV
	3606 (6)	3606 (15)	0	3595 (8)	-11	3607 (7)	1	3604 (14)	0	3599 (20)	L-	$v_{\rm as}{ m NH_2}$
	3517 (0,6)	3518 (0)	1	3509 (0,5)	~	3516 (0)	-	3514 (3)	Ϋ́	3510 (33)	L-	$v_{\rm s} {\rm NH}_2$
	1683 (17)	1682 (22)	-1	1684 (20)	-	1683 (22)	0	1688 (15)	5	1691 (15)	8	δNH_2
	1415 (27)	1478 (33)	63	1455 (46)	40	1417 (42)	7	1411 (25)	4	1405 (26)	-10	ЯОН
	1336(0)	1331 (0)	-5	1335 (0)	-	1338 (0)	7	1349 (3)	13	1357 (1)	21	ρNH_2
	1164 (127)	1188 (154)	24	1184 (127)	20	1165 (149)	1	1175 (145)	11	1177 (137)	13	$\omega \mathrm{NH}_2$
	929 (11)	937 (172)	8	937 (8)	8	933 (11)	4	927 (10)	-7	927 (16)	-7	NNO
	434 (178)	404 (29)	-30	507 (165)	73	466 (170)	32	447 (179)	13	516 (190)	82	γOH
		575 (113)		ı				ı		•		intermolecular
		245 (1)	ı	245 (72)	·	207 (104)	ı	280 (103)	ī	404 (43)	·	intermolecular
	ı	234(33)	ı	170 (19)	·	98 (8)	ı	127 (1)	·	202 (26)		intermolecular
		124 (0)	ı	156 (3)		94 (0)	ı	109 (9)		138 (5)		intermolecular
	ı	68 (2)	ı	110 (2)	·	80 (0)	ı	98 (0)	ı	106(0)		intermolecular
	ı	14(0)	ı	83 (5)	·	40 (5)	ı	58 (1)	ı	57 (4)	·	intermolecular
	ı			40 (4)		32 (0)		18(1)		16(0)		intermolecular
IL_{p}	ne IR calculate	d intensities ex	xpresse	d in km mol ⁻¹ .								

 $\boldsymbol{\omega}$

Property	А	В	С
r(NN)	1.1141	1.1138	1.1138
r(OH(…N))	0.9612	0.9617	0.9629
r(OH(…C))	0.9641	0.9630	0.9613
r(CO)	1.1375	1.1376	1.1384
$r((O)H\cdots N)$		2.3937	2.3502
$r((O)H\cdots C)$	2.3645	2.3956	
$r((H_2)O\cdots C)$			3.0898
$r((H_2)O\cdots N)$	3.1365		
φ(HOH)	104.37	104.56	104.38
φ(OH…N)		160.34	165.96
φ(OH…C)	163.89	166.32	
$\phi(NN\cdots H)$		168.45	166.01
φ(OC…H)	167.26	171.73	
$\phi(NN\cdots O(H_2))$	97.79		
$\phi(OC \cdots O(H_2))$			101.82
θ(NN···HO)		-0.03	-0.01
θ(OH…CO)	-0.01	0.00	
θ(OC···OH)			0.30
$\theta(NN\cdots OH)$	-0.10		
^{<i>a</i>} the interacting atoms refer to the Figure 6	; the bond distant	nces are given	ı in Å, the
angles in degrees.			

Table S3 Selected structural	parameters ^a calculated for the N ₂ -H ₂ O-CO complexes at the
MP2/aug-cc-pVTZ	L level of theory

А	В	С	Assignmt
$3926(141)^a$	3925 (254)	3935 (134)	$v_{as}H_2O$
3794 (69)	3804 (39)	3810 (34)	$\nu_{s}H_{2}O$
1636 (58)	1638 (36)	1632 (71)	$\delta H_2 O$
2123 (31)	2121 (33)	2115 (35)	vCO
2186 (0)	2189 (0.2)	2189 (0.3)	vN_2
352 (60)	340 (40)	286 (64)	intermolecular
226 (83)	259 (102)	188 (82)	Intermolecular
108 (5)	244 (114)	102 (3)	Intermolecular
103 (114)	103 (0.7)	96 (119)	Intermolecular
86 (7)	88 (0.8)	82 (1)	Intermolecular
70 (0)	59 (1)	68 (2)	Intermolecular
57 (16)	54 (2)	51 (10)	Intermolecular
49 (1)	44 (6)	50 (16)	Intermolecular
32 (0)	32 (13)	38 (0.7)	Intermolecular
30 (0)	10 (0)	31 (0.4)	intermolecular

Table S4 Wavenumbers (in cm $^{-1}$) of the $\rm N_2\text{-}H_2O\text{-}CO$ complexes calculated by the MP2/aug-cc-pVTZ method

^{*a*} The IR calculated intensities expressed in km mol⁻¹.