RSC Advances (Electronic Supplementary Information)

Role of cation choice in the radiation tolerance of pyrochlores

Ram Devanathan,*^a Fei Gao^a and Christina J. Sundgren^a

^aChemical & Materials Sciences Division, MS K2-01 Pacific Northwest National Laboratory, Richland, WA 99352 USA. Fax: 509-371-6242; Tel: 509-371-6487; E-mail: <u>ram.devanathan@pnnl.gov</u>

Table I. Number of Gd bond defects for radial distance (in the X-Y plane) less than 2 nm, between 2 and 2.8 nm, and beyond 2.8 nm from the center of the thermal spike.

Composition	r < 2 nm	2 nm < r < 2.8 nm	r > 2.8 nm
Gd ₂ Zr ₂ O ₇	1580	1273	181
$Gd_{2}Ti_{0.5}Zr_{1.5}O_{7}$	1587	1048	117
Gd_2TiZrO_7	1574	789	53
$Gd_{2}Ti_{1.5}Zr_{0.5}O_{7}$	1657	518	21
$Gd_2Ti_2O_7$	1710	234	1

Table II. Number of B site (Zr or Ti) bond defects for radial distance (in the X-Y plane) less than 2 nm, between 2 and 2.8 nm, and beyond 2.8 nm from the center of the thermal spike.

Composition	r < 2 nm	2 nm < r < 2.8 nm	r > 2.8 nm
$Gd_2Zr_2O_7$	1501	1188	173
$Gd_{2}Ti_{0.5}Zr_{1.5}O_{7}$	1351	912	125
Gd ₂ TiZrO ₇	1242	645	27
$Gd_{2}Ti_{1.5}Zr_{0.5}O_{7}$	913	425	18
$Gd_2Ti_2O_7$	903	179	20

Composition	r < 2 nm	2 nm < r < 2.8 nm	r > 2.8 nm
$Gd_2Zr_2O_7$	644	381	86
$Gd_{2}Ti_{0.5}Zr_{1.5}O_{7} \\$	978	513	65
Gd_2TiZrO_7	1515	501	53
$Gd_{2}Ti_{1.5}Zr_{0.5}O_{7}$	2446	461	18
$Gd_2Ti_2O_7$	2723	254	2

Table III. Number of O bond defects for radial distance (in the X-Y plane) less than 2 nm, between 2 and 2.8 nm, and beyond 2.8 nm from the center of the thermal spike.

Fig. S1 Projection of atom positions in $Gd_2Ti_{1.5}Zr_{0.5}O_7$ at ~50 ps after a 12 keV/nm thermal spike. The side length is ~12.5 nm. Gd is shown as a blue sphere, Zr and Ti as grey spheres, and O as a red sphere.

Fig. S2 Projection of atom positions in Gd₂TiZrO₇ at ~50 ps after a 12 keV/nm thermal spike. The side length is ~12.5 nm. Gd is shown as a blue sphere, Zr and Ti as grey spheres, and O as a red sphere.

Fig. S3 Projection of atom positions in $Gd_2Ti_{0.5}Zr_{1.5}O_7$ at ~50 ps after a 12 keV/nm thermal spike. The side length is ~12.5 nm. Gd is shown as a blue sphere, Zr and Ti as grey spheres, and O as a red sphere.

Fig. S4 Radial distribution functions of Gd-O and Ti-O pairs in a) perfectly crystalline and b) meltquenched amorphous $Gd_2Ti_2O_7$ at 300 K.

Fig. S5 Radial distribution functions of Gd-O and Zr-O pairs in a) perfectly crystalline and b) meltquenched amorphous $Gd_2Zr_2O_7$ at 300 K.

Fig. S6 Radial distribution functions of Gd-O and Zr-O pairs in annular cylinders centered on a 12 keV/nm thermal spike with a) radius between 2.8 and 3.5 nm; and b) radius between 3.5 and 4 nm in $Gd_2Zr_2O_7$.

Fig. S7 Radial distribution functions of Gd-O, Zr-O, and Ti-O pairs in a) the damage core and b) damage periphery in $Gd_2Ti_{1.5}Zr_{0.5}O_7$ subjected to a thermal spike with energy deposition of 12 keV/nm at 300 K. The core is amorphous while the periphery shows broad peaks characteristic of disordered pyrochlore crystal.

Fig. S8 Radial distribution functions of Gd-O, Zr-O, and Ti-O pairs in a) the damage core and b) damage periphery in Gd_2TiZrO_7 subjected to a thermal spike with energy deposition of 12 keV/nm at 300 K. These regions show peaks characteristic of the fluorite crystal.

Fig. S9 Radial distribution functions of Gd-O, Zr-O, and Ti-O pairs in a) the damage core and b) damage periphery in $Gd_2Ti_{0.5}Zr_{1.5}O_7$ subjected to a thermal spike with energy deposition of 12 keV/nm at 300 K. These two regions show peaks characteristic of the fluorite crystal.

Fig. S10 Evolution of Gd, Zr and Ti bond defects following a thermal spike with energy deposition of 12 keV/nm at 300 K in a) $Gd_2Ti_2O_7$; b) $Gd_2Ti_{1.5}Zr_{0.5}O_7$; c) Gd_2TiZrO_7 ; d) $Gd_2Ti_{0.5}Zr_{1.5}O_7$; and e) $Gd_2Zr_2O_7$.