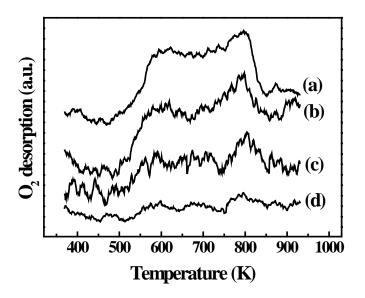
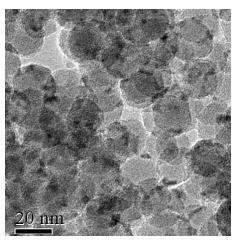
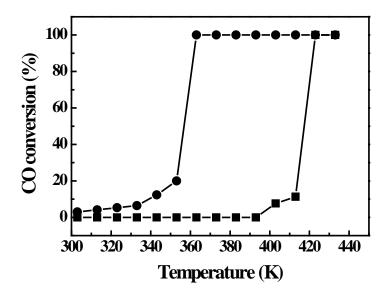

Palladium nanoparticles encapsulated in porous silica shells: an efficient and highly stable catalyst for CO oxidation

Ye Xu, Jinqiang Ma, Yuanfeng Xu, Lei Xu, Liang Xu, Hexing Li and Hui Li*


The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional

Materials, Shanghai Normal University, Shanghai 200234, P. R. China


Supplementary information


Fig. S1. TOF vaules of CO oxidation over different catalysts. (\blacksquare) Pd@SiO₂-673, (\square) Pd@SiO₂-873, (\bullet) Pd/SiO₂-673, and (\circ) Pd/SiO₂-873. Reaction conditions: 1.0 vol.% CO and 20.0 vol.% O₂ balanced with N₂, atmospheric pressure.

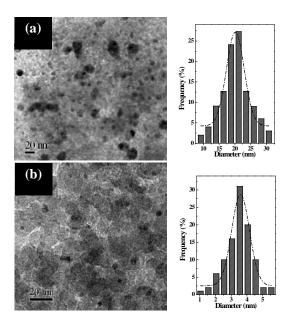

Fig. S2. O₂-TPD profiles of (a) Pd@SiO₂-673, (b) Pd@SiO₂-873, (c) Pd/SiO₂-673, and (d) Pd/SiO₂-873. The signal is normalized based on unit mass Pd

Fig. S3. TEM image of $Pd@SiO_2-673-CeO_2$. The sample was prepared by the following method. 1.0 g of $Pd@SiO_2-673$ was impregnated with $Ce(NO_3)_3\cdot 6H_2O$ aqueous solution (0.2 mol/L). After being ultrasonication for 5 min, the impregnation was allowed to proceed for 12 h. After being dried at 373 K, the sample was calcinated at 673 K for 4 h, and then reduced in a 10% H_2/N_2 flow at 373 K for 4 h.

Fig. S4. Effect of the reaction temperature on CO conversions over Pd@SiO₂-673 (\blacksquare) and Pd@SiO₂-673-CeO₂ (\bullet). Reaction conditions: 1.0 vol.% CO and 20.0 vol.% O₂ balanced with N₂, atmospheric pressure, GHSV = 6000 L g_{pd}^{-1} h⁻¹.

Fig. S5. TEM images (*left*) and the corresponding Pd size distribution histograms (*right*) of the used (a) Pd/SiO_2 -673 and (b) $Pd@SiO_2$ -673.