Supporting Information

Transition Metal-free 1,3-Dimethylimidazolium Hydrogen Carbonate Catalyzed Hydration of Organonitriles to Amides

Praveen Kumar Verma, Upendra Sharma, Manju Bala, Neeraj Kumar* and Bikram Singh*

CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India

E-mail: neerajnpp@rediffmail.com; bikram_npp@rediffmail.com

Table of Contents:

General information	S2
General experimental procedure hydration of nitriles into amides	S2
General experimental procedure for synthesis of metal phthalocyanines	S3
Table S1 for hydration of nitriles	S3
Figure S1, pictures of reaction solution (a) before and (b) after hydration	S4
Characterization data of compounds	S5-S9
NMR and mass spectra of compounds	S10-S21
UV-Vis spectra of compounds	S22-S23
References	\$24

General Information:

Metal salts used were purchased from Merck, Germany. Silica gel (60-120 mesh) used for column chromatography was purchased from Sisco Research Laboratories Pvt. Ltd. India and all other chemicals were purchased from Spectrochem, India, Merck, Germany, and Sigma-Aldrich, USA and were used without further purification. NMR spectra were recorded on a Bruker Avance-300 spectrometer. Mass spectra were recorded on QTOF-Micro of Waters Micromass and Maxis-Bruker. The GC-MS analysis was carried out on a Shimadzu (QP 2010) series Gas Chromatogram-Mass Spectrometer (Tokyo, Japan), AOC-20i auto-sampler coupled, and a DB-5MS capillary column, (30 m x 0.25 mm i.d., 0.25μ m). The initial temperature of column was 70 °C held for 4 min. and was programmed to 230 °C at 4°C/min., then held for 15 min. at 230 °C; the sample injection volume was 2 µl in GC grade dichloromethane. Helium was used as carrier gas at a flow rate of 1.1 ml min⁻¹ on split mode (1:50). Melting points were determined on a Barnstead Electrothermal 9100.

General experimental procedure for hydration of nitriles into amides:

To a mixture of nitrile (1 mmol) and EtOH: H_2O (1:1, 5mL), NHC precursor (5 mol%) was added. The reaction solution was stirred at 80 °C and the progress of the reaction was monitored by TLC (silica gel; hexane/ethyl acetate) and GC-MS. After completion, the entire mixture was transferred into a 50 mL round-bottom flask, evaporated in vacuo, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate) to give amide. Some of the amides were crystallized on cooling the reaction mixture and filtered directly from the reaction mixture to give pure amides.

General experimental procedure for synthesis of metal phthalocyanines:

To a mixture of dinitriles (1 mmol), metal salt (0.25 equiv.) and EtOH: H_2O (1:1, 5mL), NHC precursor (5 mol %) was added. The reaction solution was stirred at 160 °C for 8 h. After completion, the reaction mixture turns to blue semisolid (crude metal phthalocyanine). The blue semisolid was then successively washed with 5% (w/v) NaOH, distilled water, 2% (v/v) HCl and then again with distilled water. The blue semisolid then dissolved in minimum amount of H_2SO_4 and poured in excess of water to precipitate out the purified metal phthalocyanines. The synthesized metal phthalocyanines were then analyzed by UV-Vis and NMR spectroscopy.

Entry	Substrate	Time (h)	Product	Yield (%)
1	CN	12	CONH ₂	$0 > 99^{b}$
2	HOOC	12	HOOC CONH ₂	$0 > 99^{b}$
3	CN N H	12		$0 > 99^{b}$

Table S1 Hydration of nitriles using A^a

^{*a*} Reaction conditions: nitrile (1 mmol), **A** (5 mol %), EtOH: H_2O (1: 1, 5 mL), 80 °C temperature.

^b Nitriles remains unreacted, calculated by GC-MS.

Fig. S1 Pictures of reaction solution (a) before and (b) after hydration of 4-chlorobenzonitrile (Table 2, entry 3) catalyzed by **A**. Reaction conditions are shown in Table 2.

Characterization data of compounds:

Benzamide (Table 2, entry 1)^{1,3}:

CONH₂

Following the general experimental procedure with benzonitrile (1 mmol or 10 mmol) and catalyst **A** (5 mol%). After 2.5 h at 80 °C, extraction with ethyl acetate afforded benzamide (97 %) as a white solid. Mp = 125-127 °C (Lit² mp = 127-128 °C). ¹H NMR (300 MHz, CD₃OD): δ 7.88 (d, *J* = 7.5, Hz, 2H), 7.55 (t, *J* = 7.3, Hz, 1H), 7.44-749 (m, 2H). ¹³C NMR (75 MHz, CD₃OD): δ (ppm) = 171.4, 133.9, 131.9, 128.5, 127.6; HRESIMS calcd for C₇H₈NO [M+H]⁺ 122.0606, found 122.0621.

4-Fluorobenzamide (Table 2, entry 2):

Following the general experimental procedure with 4-fluorobenzonitrile (1 mmol) and catalyst **A** (5 mol%). After 6 h at 80 °C, on cooling the reaction mixture 4-fluorobenzamide (90%) was obtained as white crystals after filtration and washing with distilled water. Mp = 150-153 °C (Lit mp = 149-150 °C⁴). ¹H NMR (300 MHz, CD₃OD): δ 7.97-7.92 (m, 2H), 7.22-7.16 (m, 2H). ¹³C NMR (75 MHz, CD₃OD): δ 170.1., 167.0, 163.7, 130.4, 130.3, 115.5, 115.2. HRESIMS calcd for C₇H₇NOCl [M+H]⁺ 140.0512, found 140.0529.

4-Chlorobenzamide (Table 2, entry 3)¹:

CONH₂

Following the general experimental procedure with 4-chlorobenzonitrile (1 mmol or 10 mmol) and catalyst **A** (5 mol%). After 6 h at 80 °C, on cooling the reaction mixture 4-chlorobenzamide (91%) was obtained as white crystals after filtration and washing with distilled water. Mp = 171-174 °C (Lit² mp = 172-174 °C). ¹H NMR (300 MHz, CD₃OD): δ 7.87 (d, *J* = 8.7, Hz, 2H), 7.46 (d, *J* = 8.7, Hz, 2H). ¹³C NMR (75 MHz, CD₃OD): δ 171.3, 139.2, 133.8, 130.5, 129.9. HRESIMS calcd for C₇H₇NOCl [M+H]⁺ 156.0216, found 156.0216.

4-Bromobenzamide (Table 2, entry 4)^{1,3}:

Following the general experimental procedure with 4-bromobenzonitrile (1 mmol) and catalyst **A** (5 mol%). After 6 h at 80 °C, extraction with ethyl acetate afforded 4-bromobenzamide (84%) as a white solid. Mp = 190-193 °C (Lit mp⁶ = 190-192 °C). ¹H NMR (300 MHz, CD₃OD): δ 7.79 (d, *J* = 8.6 Hz, 2H), 7.63 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (75 MHz, CD₃OD): δ 171.7, 134.6, 133.2, 131.0, 127.8. HRESIMS calcd for C₇H₇NOBr [M+H]⁺ 199.9711, found 199.9702.

4-Nitrobenzamide (Table 2, entry 8)^{1,3}:

Following the general experimental procedure with 4-nitrobenzonitrile (1 mmol or 10 mmol) and catalyst **A** (5 mol%). After 4 h at 80 °C, extraction with ethyl acetate afforded 4-nitrobenzamide (96%) as a white solid. Mp = 198-202 °C (Lit⁴ mp = 198-200 °C). ¹H NMR (300 MHz, CD₃OD): δ 7.79 (d, *J* = 8.6, Hz, 2H), 7.63 (d, *J* = 8.6, Hz, 2H). ¹³C NMR (75 MHz, CD₃OD): δ 169.1, 150.2, 139.9, 129.0, 123.6. HRESIMS calcd for C₇H₇N₂O₃ [M+H]⁺ 167.0457, found 167.0442.

Isonicotinamide (Table 2, entry 11)^{1,3}:

Following the general experimental procedure with 4-cyanopyridine (1 mmol or 10 mmol) and catalyst **A** (5 mol%). After 3 h at 80 °C, on cooling the reaction mixture isonicotinamide (96%) was obtained as white crystals after filtration and washing with distilled water. Mp = 152-155 °C. ¹H NMR (300 MHz, CD₃OD): δ 7.79 (dd, *J* = 4.5 Hz, *J* = 1.6 Hz, 2H), 7.63 (dd, *J* = 4.5 Hz, *J* = 1.6 Hz, 2H). ¹³C NMR (75 MHz, CD₃OD): δ (ppm) = 170.2, 151.5, 143.9, 123.6. HRESIMS calcd for C₆H₇N₂O [M+H]⁺ 123.0558, found 123.0526.

Thiophene-2-carboxamide (Table 2, entry 12)⁴:

Following the general experimental procedure with thiophene-2-carbonitrile (1 mmol) and catalyst **A** (5 mol%). After 4 h at 80 °C, extraction with ethyl acetate afforded thiophene-2-carboxamide (97%) as a white solid. Mp = 175-176 °C (Lit⁴ mp = 177-178 °C). ¹H NMR (300 MHz, CD₃OD): δ 7.74-7.66 (m, 2H), 7.15-7.12 (m, 1H). ¹³C NMR (75 MHz, CD₃OD): δ 167.1, 140.3, 132.6, 131.1, 129.3. HRESIMS calcd for C₅H₆NOS [M+H]⁺ 128.0170, found 128.0186.

Phthalimide (Table 3, entry 1):

Following the general experimental procedure with 1,2-benzenedinitrile (1 mmol) and catalyst **A** (5 mol%). After 4 h at 80 °C, extraction with ethyl acetate afforded phthalimide (90%) as a white solid. Mp = 230-232 °C (Lit⁵ mp = 228-230 °C). ¹H NMR (300 MHz, DMSO- d_6): δ 6.19 (s, 4H), 9.78 (brs, NH). ¹³C NMR (75 MHz, DMSO- d_6): δ 170.1, 135.1, 133.3, 123.7.

Isophthalimide (Table 3, entry 2)¹:

Following the general experimental procedure with isophthalonitrile (1 mmol) and catalyst **A** (5 mol%). After 6.5 h at 80 °C, extraction with ethyl acetate afforded isophthalimide (91%) as a white solid. Mp = 290-292 °C. ¹H NMR (300 MHz, DMSO- d_6): δ 8.37 (s, 1H), 8.04 (brs, 2xNH), 7.99 (d, *J* = 7.7 Hz, 2H), 7.53 (t, 7.7 Hz, 1H), 7.46 (brs, 2xNH); ¹³C NMR (75 MHz, DMSO- d_6): δ 167.5, 134.4, 130.0, 128.2, 126.7; HRESIMS calcd for C₈H₉N₂O₂ [M+H]⁺ 165.0664, found 165.0639.

Terephthalimide (Table 3, entry 3):

```
H<sub>2</sub>NOC CONH<sub>2</sub>
```

Following the general experimental procedure with terephthalonitrile (1 mmol) and catalyst **A** (5 mol%). After 6.5 h at 80 °C, extraction with ethyl acetate afforded terephthalimide (95%) as a white solid. Mp = 318-320 °C. ¹H NMR (300 MHz, DMSO- d_6): δ 8.07 (brs, 2xNH), 7.93 (s, 4H), 7.48 (brs, 2xNH); ¹³C NMR (75 MHz, DMSO- d_6): δ 166.7, 136.0, 126.8; HRESIMS calcd for C₈H₉N₂O₂ [M+H]⁺ 165.0664, found 165.0648.

3-Nitrophthalimide (Table 3, entry 6):

Following the general experimental procedure with 3-nitrophthalonitrile (1 mmol) and catalyst **A** (5 mol%). After 6 h at 80 °C, extraction with ethyl acetate afforded 3-nitrophthalimide (92%) as a white solid. Mp = 210-213 °C. ¹H NMR (300 MHz, DMSO- d_6): δ 7.99-8.05 (m, 1H), 8.08-8.11 (m, 1H), 8.22-8.24 (m, 1H); ¹³C NMR (75 MHz, DMSO- d_6): δ 167.5, 164.9, 144.6, 136.4, 134.9, 128.4, 127.1, 124.2.

Cobalt (II) phthalocyanine (Table 4, entry 1):

Following the general experimental procedure with 1,2-dicyanobenzene (1 mmol), CoCl₂.6H₂O (0.25 equiv) and EtOH: H₂O (1:1, 5mL), NHC precursor (5 mol%) was added. The reaction solution was stirred at 160 °C for 8 h. After completion, the reaction mixture turns to blue semisolid (crude cobalt (II) phthalocyanine). The blue semisolid was then successively washed with 5 % (w/v) NaOH, distilled water, 2 % (v/v) HCl and then again with distilled water. The blue semisolid then dissolved in minimum amount of H₂SO₄ and poured in excess of water to precipitate out the purified cobalt (II) phthalocyanines (59%). UV/Vis (THF): λ_{max} (nm) 660, 596, 335.

Iron (II) phthalocyanine (Table 4, entry 2):

Following the general experimental procedure with 1,2-dicyanobenzene (1 mmol), FeSO₄.7H₂O (0.25 equiv.) and EtOH: H₂O (1:1, 5mL), NHC precursor (5 mol %) was added. The reaction solution was stirred at 160 °C for 8 h. After completion, the reaction mixture turns to blue semisolid (crude iron (II) phthalocyanine). The blue semisolid was then successively washed with 5% (w/v) NaOH, distilled water, 2% (v/v) HCl and then again with distilled water. The blue semisolid then dissolved in minimum amount of H₂SO₄ and poured in excess of water to precipitate out the purified iron (II) phthalocyanines (54%). UV/Vis (MeOH): λ_{max} (nm) 659, 602, 332; UV/Vis (THF): λ_{max} (nm) 705, 667.

4-tert-Butyl cobalt (II) phthalocyanine (Table 4, entry 3):

Following the general experimental procedure with 4-*tert*-Butyl-1,2-dicyanobenzene (1 mmol), CoCl₂.6H₂O (0.25 equiv.) and EtOH: H₂O (1: 1, 5mL), NHC precursor (5 mol%) was added. The reaction solution was stirred at 160 °C for 8 h. After completion, the reaction mixture turns to blue semisolid (crude 4-*tert*-Butyl cobalt (II) phthalocyanine). The blue semisolid was then successively washed with 5% (w/v) NaOH, distilled water, 2% (v/v) HCl and then again with distilled water. The blue semisolid then dissolved in minimum amount of H₂SO₄ and poured in excess of water to precipitate out the purified 4-*tert*-butyl cobalt (II) phthalocyanines (66%). UV/Vis (THF): λ_{max} (nm) 666, 601, 333. ¹H NMR (300 MHz, CD₃OD): δ 7.75-8.03 (m, 12H), 1.41 (s, 36H); ¹³C NMR (75 MHz, CD₃OD): δ 162.3, 160.1, 132.7, 124.1, 121.3, 36.8, 31.7.

NMR and mass spectra of compounds:

S12

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2012

UV-Vis spectra of metal phthalocyanines:

Figure S2: UV spectrum of cobalt (II) phthalocyanine in THF.

Figure S3: UV spectrum of iron (II) phthalocyanine in THF.

Figure S4: UV spectrum of iron (II) phthalocyanine in methanol.

Figure S5: UV spectrum of tetra tert-butyl cobalt (II) phthalocyanine in THF.

References:

- 1. R. S. Ramon, N. Marion and S. P. Nolan, Chem. Eur. J. 2009, 15, 8695-8697.
- 2. Z. Li, L. Wang and X. Zhou, Adv. Synth. Catal. 2012, 354, 584-588.
- 3. T. Tu, Z. Wang, Z. Liu, X. Feng, and Q. Wang, Green Chem. 2012, 14, 921-924.
- 4. L. Cao, J. Ding, M. Gao, Z. Wang, J. Li and A. Wu, Org. Lett. 2009, 11, 3810-3813.
- F. Hassanzadeh, M. Rabbani, G. A. Khodarahmi, A. Fasihi, G. H. Hakimelahi and M. Mohajeri, *RPS*, 2007, 2, 35-41.
- 6. N. A. Owston, A. J. Parker and J. M. J. Williams, Org. Lett. 2007, 9, 73-75.