Electronic Supplementary Material

Synthesis of non-peripheral amine substituted nickel(II) phthalocyanine capped gold nanoparticles and their immobilization on electrode for the electrocatalytic oxidation of hydrazine

A. John Jeevagan and S. Abraham John*

Centre for Nanoscience and Nanotechnology Department of Chemistry, Gandhigram Rural Institute Gandhigram – 624 302, Dindigul, India

*Corresponding author: Tel: +91 451 245 2371 ; Fax : + 91 451 245 3031

E-mail: <u>abrajohn@yahoo.co.in</u>

Fig. S1. X-ray diffraction pattern obtained for (A) 4α -Ni^{II}TAPc-AuNPs and (B) ITO/MPTS/ 4α -Ni^{II}TAPc-AuNPs.

Fig. S2. LSVs obtained for 0.5 mM hydrazine at (a) Au/HDT/C-AuNPs and (b) Au/HDT/Ni^{II}TAPc-AuNPs modified electrodes in 0.2 M PB solution (pH 7.2) at a scan rate of 0.05 V s^{-1} .

Fig. S3. CVs obtained for (a) bare Au, (b) Au/HDT/C-AuNPs and (c) Au/HDT/4 α -Ni^{II}TAPc-AuNPs modified electrodes in 0.2 M PB solution (pH 7.2) at a scan rate of 0.05 V s⁻¹.

Fig. S4. CVs obtained for 0.5 mM hydrazine at Au/HDT/4 α -Ni^{II}TAPc-AuNPs modified Au electrode in 0.2 M PB solution (pH 7.2) at scan rates of 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 V s⁻¹.

Table S1

Table for impedance data

Parameter	Bare Au	Au/HDT	Au/HDT /4α- Ni ^{II} TAPc- AuNPs
$R_{s}(k\Omega)$	0.211	0.120	0.110
CPE (F)	$4.288\times10^{\text{-6}}$	$7.092 imes 10^{-7}$	5.868×10^{-7}
$R_{CT}(k\Omega)$	12.93	103.67	17.55
k_{et} (cm s ⁻¹)	$6.628 imes 10^{-4}$	8.278×10 ⁻⁵	4.889×10 ⁻⁴