Electronic Supplementary Information

Nitro and amino BODIPYS: Crucial substituents to modulate their photonic behavior

Ixone Esnal,^a Jorge Bañuelos, ^{a*} Iñigo López Arbeloa, ^a Angel Costela,^b Inmaculada Garcia-Moreno, ^b Miguel Garzón,^c Antonia R. Agarrabeitia, ^c María José Ortiz^c

^a Departamento de Química Física, Universidad País Vasco (UPV-EHU), Aptdo. 644, 48080, Bilbao, Spain.

^b Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto Quimica-Fisica "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.

^c Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain.

Table of Contents					
Nitration of BODIPYs	S3				
Reduction of BODIPYs	S3				
Reactions of BODIPYs with HNO ₃ /Ac ₂ O	S3				
Nitration of BODIPY 1	S3				
Nitration of BODIPY 2	S4				
Independent synthesis of 2-ethyl-4,4-difluoro-1,3,8-trimethyl-6-nitro-4-bora-					
3a,4a-diaza-s-indacene (3)	S4				
Nitration of (1 <i>H</i> -pyrrol-2-yl) (4-tolyl) methanone (11)	S5				
Independent synthesis of 4,4-difluoro-2-nitro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-					
indacene (5)	S5				
Synthesis of 5-amino-2-ethyl-4,4-difluoro-1,3,8-trimethyl-4-bora-3a,4a-diaza-					
s-indacene (7)	S6				
Synthesis of 3-amino-4,4-difluoro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene (8)	S6				
¹ H NMR and ¹³ C NMR spectra compounds	S7-S22				
Table S1-S3. Photophysical data	S23-S25				
Scheme S1. Tautomeric equilbrium	S26				
Figure S1-S2. Absorption spectra	S27				

BODIPY dyes 1^1 and 2^2 were synthesized by the methods previously described.

General procedure for the nitration reactions

To a stirred solution of BODIPY (1 equiv) in Ac₂O was added HNO₃ (2-4 equiv) at 0 °C under an argon atmosphere. The mixture was stirred for 10-30 min and after that time, the solvent was removed under reduced pressure. The products were purified by flash chromatography on silica gel (eluent hexane/EtOAc).

General procedure for the reduction reactions

A solution of the corresponding nitro-BODIPY in EtOAc was hydrogenated in an H-Cube continuous flow reactor with a flow rate of 1.0 mL/min, full pressure of hydrogen, at 40 °C, and using a 10% Pd/C CatCartTM cartridge. The solvent was removed under reduced pressure and the product was obtained in quantitative yield

Reactions of BODIPYs 1-2 with HNO₃/Ac₂O

Nitration of BODIPY 1. According to general procedure, BODIPY 1 (100 mg, 0.33 mmol), HNO₃ (0.03 mL, 0.66 mmol) in Ac₂O (15 mL) for 10 min were reacted. Flash chromatography using hexane/EtOAc (8:2) afforded, by order of elution, 2-ethyl-4,4difluoro-1,3,8-trimethyl-6-nitro-4-bora-3a,4a-diaza-s-indacene (3) (11 mg, 11%) as a yellow solid and 2-ethyl-4,4-difluoro-1,3,8-trimethyl-5-nitro-4-bora-3a,4a-diaza-sindacene (4) (37 mg, 37%) as a yellow solid.

Compound 3: m.p. 238.0-239.0 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.01 (1 H, s, H-5), 7.30 (1 H, s, H-7), 2.57 (3 H, s, CH₃-C3), 2.52 (3 H, s, CH₃-C8), 2.40 (2 H, g, J = 7.5 Hz, CH₂), 2.33 (3 H, s, CH₃-C1), 1.03 (3 H, t, J = 7.5 Hz, CH₃CH₂); ¹³C NMR (75) MHz, CDCl₃): δ 168.2 (C), 143.5 (C), 140.2 (C), 139.1 (C), 138.6 (C), 137.4 (C), 132.2 (C), 130.9 (CH), 113.6 (CH), 17.1 (CH₂), 16.1 (CH₃), 14.4 (CH₃), 14.1 (CH₃), 13.8 (CH₃); IR (neat): 1596, 1505, 1367, 1298, 1086, 979, 757 cm⁻¹; HRMS-ESI⁺: calcd for $(C_{14}H_{16}BF_2N_3O_2+H^+)$ 308.1376 found 308.1385.

Compound 4: m.p. 166.9-168.0 °C; ¹H NMR (700 MHz, CDCl₃): δ 7.10 (1 H, d, J = 4.2 Hz, H-6), 6.77 (1 H, d, J = 4.9 Hz, H-7), 2.62 (3 H, s, CH₃-C3), 2.53 (3 H, s, CH₃-C8), 2.40 (2 H, q, J = 7.7 Hz, CH₂), 2.32 (3 H, s, CH₃-C1), 1.03 (3 H, t, J = 7.7 Hz,

¹ J. Bañuelos Prieto, A. R. Agarrabeitia, I. Garcia-Moreno, I. López Arbeloa, A. Costela, L. Infantes, M. E. Pérez-Ojeda, M. Palacios Cuesta, M. J. Ortiz, Chem. Eur. J. 2010, 16, 14094-14105.
² A. Cui, X. Peng, J. Fan, X. Chen, Y. Wu, B. Guo J. Photochem. Photobiol. A 2007, 186, 85-92.

C<u>H</u>₃CH₂); ¹³C NMR (176 MHz, CDCl₃): δ 170.1 (C), 147.2 (C), 143.2 (C), 139.8 (C), 138.2 (C), 137.8 (C), 135.2 (C), 117.7 (CH), 114.6 (CH), 17.2 (CH₂), 15.9 (CH₃), 14.4 (CH₃), 14.1 (CH₃), 14.0 (CH₃); IR (neat): 1604, 1296, 1160, 1119, 1018, 750 cm⁻¹; HRMS-ESI⁺: calcd for (C₁₄H₁₆BF₂N₃O₂+H⁺) 308.1376 found 308.1384.

Nitration of BODIPY 2. According to general procedure, BODIPY 2 (100 mg, 0.35 mmol), HNO₃ (0.06 mL, 1.4 mmol) in Ac₂O (15 mL) for 10 min were reacted. Flash chromatography using hexane/EtOAc (8:2) afforded, by order of elution, 4,4-difluoro-2-nitro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene (5) (7 mg, 6%) as a yellow solid and 4,4-difluoro-3-nitro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene (6) (41 mg, 36%) as a yellow solid.

Compound 5: ¹H NMR (700 MHz, CDCl₃): δ 8.28 (1 H, s, H-3), 8.17 (1 H, s, H-5), 7.42 (2 H, d, J = 8.4 Hz, H-2′), 7.34 (2 H, d, J = 8.4 Hz, H-3′), 7.27 (1 H, s, H-1), 7.17 (1 H, d, J = 4.9 Hz, H-7), 6.71 (1 H, d, J = 4.9 Hz, H-6), 2.44 (3 H, s, CH₃); ¹³C NMR (176 MHz, CDCl₃): δ 151.2 (CH), 150.0 (C), 143.1 (C), 141.7 (C), 137.6 (C), 136.1 (CH), 135.2 (CH), 131.9 (C), 130.7 (2 CH), 129.8 (2 CH), 129.7 (C), 122.3 (CH), 122.0 (CH), 21.6 (CH₃); IR (neat): 1590, 1298, 1108, 1051, 756 cm⁻¹; HRMS-ESI⁻: calcd for (C₁₆H₁₂BF₂N₃O₂) 327.0996 found 327.1013.

Compound **6**: m.p. 192.5-193.0 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.23 (1 H, s, H-5), 7.38 (2 H, d, J = 8.1 Hz, H-2′), 7.31 (2 H, d, J = 8.1 Hz, H-3′), 7.14 (1 H, d, J = 4.5 Hz, H-2), 7.10 (1 H, d, J = 4.5 Hz, H-7), 6.73 (1 H, dd, J = 4.5 and 1.2 Hz, H-6), 6.71 (1 H, d, J = 4.5 Hz, H-1), 2.43 (3 H, s, CH₃); ¹³C NMR (176 MHz, CDCl₃): δ 152.0 (CH), 149.5 (C), 148.4 (C), 141.6 (C), 136.7 (C), 135.1 (CH), 133.4 (C), 129.8 (2 CH), 128.8 (C), 128.6 (2 CH), 125.5 (CH), 122.5 (CH), 113.8 (CH), 20.5 (CH₃); IR (neat): 1600, 1498, 1278, 1100, 990, 759 cm⁻¹; HRMS-ESI⁻: calcd for (C₁₆H₁₂BF₂N₃O₂) 327.0996 found 327.1022.

Independent synthesis of 2-ethyl-4,4-difluoro-1,3,8-trimethyl-6-nitro-4-bora-3a,4adiaza-s-indacene (3).

To a solution of 2-acetyl-4-nitro-1*H*-pyrrole³ (**10**) (500 mg, 3.25 mmol) in CHCl₃ (10 mL) was added POCl₃ (1.5 mL, 16.25 mmol), and the mixture was stirred for 30 min at rt. Then, 3-ethyl-2,4-dimethyl-1*H*-pyrrole (0.44 mL, 3.25 mmol) in CHCl₃ (5 mL) was

³ H. Oda, T. Hanami, T. Iwashita, M. Kojima, M. Itoh, Y. Hayashizaki, *Tetrahedron*, 2007, 63, 12747-12753.

added and the resulting solution was stirred for 12 h at rt. Triethylamine (0.5 mL, 3.25 mmol) was added, followed by an addition of $BF_3 \cdot Et_2O$ (0.4 mL, 3.25 mmol), and stirring was continued for 3 h before being quenched with 10% aqueous HCl and extracted with CH_2Cl_2 . The organic extracts were washed with H_2O , dried over MgSO₄, filtered and evaporated to dryness. Flash chromatography using hexane/EtOAc (8:2) afforded **3** (200 mg, 24%).

Nitration of (1*H*-pyrrol-2-yl) (4-tolyl) methanone (11). According to general procedure, compound 11^4 (200 mg, 1.17 mmol), HNO₃ (0.1 mL, 2.2 mmol) in Ac₂O (5 mL) for 30 min were reacted. Flash chromatography using hexane/EtOAc (95:5) afforded, by order of elution, (5-nitro-1*H*-pyrrol-2-yl) (4-tolyl) methanone (12) (82 mg, 32%) as a yellow solid and (4-nitro-1*H*-pyrrol-2-yl) (4-tolyl) methanone (13) (66 mg, 26%) as a yellow solid.

Compound **12**: ¹H NMR (300 MHz, CDCl₃): δ 10.35 (NH), 7.76 (2 H, d, J = 8.1 Hz, 4-tolyl), 7.27 (2 H, d, J = 8.1 Hz, 4-tolyl), 7.07-7.05 (1 H, m, pyrrol), 6.80-6.79 (1 H, m, pyrrol), 2.40 (3 H, s, CH₃); ¹³C NMR (75 MHz, C₃D₆O): δ 185.5 (CO), 152.4 (C), 144.7 (C), 138.1 (C), 135.6 (C), 130.2 (2 CH), 130.1 (2 CH), 118.1 (CH), 110.9 (CH), 21.6 (CH₃); IR (neat): 3130, 1618, 1490, 1317, 1101, 790 cm⁻¹; HRMS-EI: calcd for (C₁₂H₁₀N₂O₃) 230.0691 found 230.0687.

Compound **13**: ¹H NMR (300 MHz, C₃D₆O): δ 12.02 (NH), 8.14-8.12 (1 H, m, pyrrol), 7.89 (2 H, d, *J* = 8.1 Hz, 4-tolyl), 7.42 (2 H, d, *J* = 8.1 Hz, 4-tolyl), 7.35-7.34 (1 H, m, pyrrol), 2.46 (3 H, s, CH₃); ¹³C NMR (75 MHz, C₃D₆O): δ 185.0 (CO), 144.8 (C), 139 .0 (C), 135.7 (C), 131.6 (C), 130.6 (2 CH), 130.3 (2 CH), 125.7 (CH), 112.8 (CH), 22.0 (CH₃); IR (neat): 3138, 1615, 1502, 1327, 1112, 782 cm⁻¹; HRMS-EI: calcd for (C₁₂H₁₀N₂O₃) 230.0691 found 230.0633.

Independent synthesis of 4,4-difluoro-2-nitro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene (5).

To a solution of **12** (90 mg, 0.42 mmol) in CHCl₃ (10 mL) was added POCl₃ (0.1 mL, 1.08 mmol), and the mixture was stirred for 30 min at rt. Then, pyrrole (0.04 mL, 0.3 mmol) in CHCl₃ (5 mL) was added and the resulting solution was stirred for 2 h at rt. Triethylamine (2 mL, 13 mmol) was added, followed by an addition of BF₃·Et₂O (2 mL, 13 mmol), and stirring was continued for 2 h before being quenched with 10% aqueous

⁴ A. R. Katritzky, K. Suzuki, S. K. Singh, H.-Y. He, J. Org. Chem. 2003, 68, 5720-5723.

HCl and extracted with CH_2Cl_2 . The organic extracts were washed with water, dried over MgSO₄, filtered and evaporated to dryness. Flash chromatography using hexane/EtOAc (9:1) afforded **5** (6 mg, 6%).

Synthesis of 5-amino-2-ethyl-4,4-difluoro-1,3,8-trimethyl-4-bora-3a,4a-diaza-sindacene (7). According to general procedure, BODIPY 4 (37 mg, 0.12 mmol) in EtOAc (25 mL) was hydrogenated, yielding 7 (33 mg, 99%) as an orange solid. m.p. 230.8-231.8 °C; ¹H NMR (700 MHz, C₆D₆): δ 6.61 (1 H, d, J = 2.1 Hz, H-7), 5.16 (1 H, d, J = 2.1 Hz, H-6), 4.51 (2 H, broad s, NH₂), 2.66 (3 H, s, CH₃), 2.23 (2 H, q, J = 7.7 Hz, CH₂), 1.96 (3 H, s, CH₃), 1.84 (3 H, s, CH₃), 0.95 (3 H, t, J = 7.7 Hz, CH₃CH₂); ¹³C NMR (176 MHz, C₆D₆): δ 158.1 (C-NH₂), 144.8 (C), 132.0 (C), 131.3 (C), 129.7 (C), 129.5 (CH), 129.4 (C), 106.8 (CH), 17.2 (CH₂), 15.7 (CH₃), 15.3 (CH₃), 12.7 (CH₃), 12.1 (CH₃); IR (neat): 3382, 1637, 1590, 1480, 1325, 1226, 1159, 772 cm⁻¹; HRMS-ESI⁻: calcd for (C₁₄H₁₈BF₂N₃-H⁺) 276.1489 found 276.1498.

Synthesis of 3-amino-4,4-difluoro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene (8). According to general procedure, BODIPY 6 (23 mg, 0.07 mmol) in EtOAc (25 mL) was hydrogenated, yielding 8 (20 mg, 99%) as an orange solid. m.p. 192.0-193.0 °C; ¹H NMR (300 MHz, C₆D₆): δ 7.75 (1 H, broad s, H-5), 7.07 (2 H, d, *J* = 8.1 Hz, H-2'), 6.85 (2 H, d, *J* = 8.1 Hz, H-3'), 6.53 (1 H, d, *J* = 3.3 Hz, H-7), 6.46 (1 H, d, *J* = 4.8 Hz, H-1), 6.28 (1 H, dd, *J* = 3.3 and 2.4 Hz, H-6), 5.08 (1 H, d, *J* = 4.8 Hz, H-2), 4.77 (2 H, broad s, NH₂), 2.06 (3 H, s, CH₃); ¹³C NMR (176 MHz, C₆D₆): δ 159.2 (C-NH₂), 137.4 (C), 133.5 (CH), 133.3 (C), 131.7 (C), 131.5 (C), 131.0 (CH), 130.6 (C), 128.9 (2 CH), 127.3 (2 CH), 119.5 (CH), 112.4 (CH), 110.4 (CH), 19.5 (CH₃); IR (neat): 3375, 1643, 1582, 1400, 1167, 1056, 741 cm⁻¹; HRMS-ESI⁻: calcd for (C₁₆H₁₄BF₂N₃-H⁺) 296.1176 found 296.1187.

Table S1. Photophysical properties of compound **1** and its amino derivative **7** in different media ranking from apolar, to polar and polar/protic solvents; absorption (λ_{ab}) and emission (λ_{fl}) wavelength at the maximum, molar absorption (ε_{max}), fluorescence quantum yield (ϕ) and lifetime (τ), radiative (k_{fl}) and non-radiative rate constants (k_{nr}), and Stokes shift (Δv_{St}).

	λ _{ab} (nm)	ϵ_{max} (M ⁻¹ cm ⁻¹)	λ_{fl} (nm)	ф	τ (ns)	$k_{\rm fl} \ (10^{-8} {\rm s}^{-1})$	k_{nr} (10 ⁻⁸ s ⁻¹)	$\begin{array}{c} \Delta\nu_{St} \\ (cm^{-1}) \end{array}$
1								
c-hexane	504.0	33000	515.0	0.96	5.46	1.75	0.07	760
ethyl acetate	496.0	25000	512.5	0.84	5.57	1.50	0.28	650
acetone	495.0	22000	512.5	0.79	5.66	1.39	0.37	690
ethanol	497.0	25000	513.5	0.84	5.73	1.46	0.28	630
methanol	495.5	25000	512.5	0.76	5.78	1.31	0.41	660
F ₃ -ethanol	492.0	19000	511.0	0.75	6.17	1.21	0.40	760
7								
c-hexane	522.0	19000	538.0	0.97	4.44	2.18	0.07	570
ethyl acetate	513.0	13000	535.0	0.79	4.21	1.87	0.50	800
acetone	510.5	12000	534.5	0.77	4.30	1.80	0.52	910
ethanol	512.0	10000	535.0	0.79	4.49	1.77	0.46	850
methanol	510.0	9000	534.0	0.74	4.54	1.62	0.58	880
F ₃ -ethanol	509.5	5000	533.5	0.69	5.63	1.23	0.55	885

Table S2. Photophysical properties of the nitro derivatives **3** and **4** in different media; absorption (λ_{ab}) and emission (λ_{fl}) wavelength at the maximum, molar absorption (ε_{max}), fluorescence quantum yield (ϕ) and lifetime (τ), radiative (k_{fl}) and non-radiative rate constants (k_{nr}).

	λ_{ab}	ϵ_{max}	$\lambda_{\rm fl}$	ф	τ	$k_{\rm fl}$	k_{nr}
	(nm)	(M cm)	(nm)		(ns)	(10^{-5})	(10^{-5})
3							
c-hexane	458.0	24000	509.0	0.53	3.13	1.70	1.49
	476.0		530.0				
Diethyl ether	452.0	21000	508.0	0.20	2.96	0.68	2.69
			526.5				
THF	451.5	21000	509.0	0.18	2.56	0.69	3.22
			527.5				
dioxane	456.5	22000	509.0	0.29	3.28	0.88	2.16
			531.5				
ethyl acetate	450.0	21000	507.5	0.33	2.56	1.27	2.63
			526.0				
acetone	446.5	15000	509.0	0.19	2.01	0.96	4.02
			522.5				
ethanol	449.0	21000	509.5	0.24	2.07	1.16	3.67
			527.0	0.4 -			
methanol	446.5	21000	509.5	0.17	1.54	1.10	5.39
D (1 1	440.5	20000	526.5	0.02	0.10	0.00	51 74
F ₃ -ethanol	440.5	20000	510.0	0.02	0.19	0.89	51.74
			527.5				
4							
c-hexane	474.0	25000	530.5	0.174	1.53	1.11	5.42
			556.0				
Diethyl ether	466.0	27000	532.5	0.019	0.47 (95%)	-	-
			555.0		3.55 (5%)		
THF	468.0	24000	533.5	0.012	0.25 (91%)	-	-
			560.5		3.03 (9%)		
dioxane	470.0	26000	536.0	0.023	0.44 (92%)	-	-
			564.5		3.40 (8%)		
ethyl acetate	465.5	21000	533.0	0.023	0.27 (94%)	-	-
			558.0		3.07 (6%)		
acetone	461.5	17000	531.0	0.009	0.12 (92%)	-	-
	467.0	10000		0.000	2.05 (8%)		
ethanol	465.0	19000	530.5	0.009	0.09 (93%)	-	-
	462.5	20000	520.5	0.005	2.00 (7%)		
methanol	462.5	20000	530.5	0.005	0.05 (91%)	-	-
E ather -1	150 5	10000	506 5	0.004	1.73 (9%)		
r ₃ -etnanol	438.3	19000	506.5	0.004	-	-	-

Table S3. Photophysical properties of the reference compound **2** and its amino (**8**) and nitro (**6**) derivatives in different media; absorption (λ_{ab}) and emission (λ_{fl}) wavelength at the maximum, molar absorption (ε_{max}), fluorescence quantum yield (ϕ) and lifetime (τ), radiative (k_{fl}) and non-radiative rate constants (k_{nr}).

	λ_{ab}	Emax	λ_{fl}	φ	τ	k _{fl}	k _{nr}
	(nm)	$(M^{-1}cm^{-1})$	(nm)		(ps)	$(10^{-8} \mathrm{s}^{-1})$	$(10^{-8} \mathrm{s}^{-1})$
2							
c-hexane	500.5	69000	516.0	0.036	340	1.05	28.3
ethyl acetate	497.0	62000	514.5	0.024	237	1.01	41.2
acetone	496.5	61000	514.5	0.018	196	0.92	50.1
ethanol	497.5	62000	514.5	0.025	253	0.99	38.5
methanol	496.0	61000	513.5	0.018	197	0.91	49.8
F ₃ -ethanol	493.0	56000	509.5	0.031	323	0.96	30.0
8							
c-hexane	472.5	48000	515.5	0.017	88	1.93	110.5
	499.0						
Diethyl ether	462.0	32000	514.0	0.014	76	1.84	129.4
THE	463.0	30000	517.5	0.018	88	2 04	111.6
1111	477.5	50000	517.5	0.010	00	2.04	111.0
dioxane	466.0	31000	519.0	0.029	153	1.89	63.4
	484.0						
ethyl acetate	462.0	30000	517.5	0.017	78	2.18	126.0
	474.5						
acetone	460.0	29000	517.0	0.012	64	1.72	154.5
ethanol	458.0	30000	514.5	0.017	91	1.87	108.0
methanol	456.0	29000	515.0	0.013	66	1.82	149.7
F ₃ -ethanol	451.5	26000	512.5	0.023	140	1.64	69.8
6							
c-hexane	485.0	39000	519.0	0.131	1020	1.29	8.5
D: 1 1 1	509.0	22000	501.0	0.100	020	1.00	0.7
Diethyl ether	480.0	33000	521.0	0.100	930	1.08	9.7
	506.0	20000	500.0	0.1.4.4	1050	1 1 7	()
THF	482.0	30000	528.0	0.144	1250	1.15	6.9
diavana	475.0	10000	521.5	0.202	1025	1.05	4.1
uloxalic	509.0	19000	551.5	0.205	1955	1.05	4.1
ethyl acetate	483.0	23000	524.0	0.116	1197	0.97	74
etti ji acetate	505.0	23000	021.0	0.110	117,	0.97	<i>,</i>
acetone	481.0	21000	526.0	0 109	1060	1 02	84
	505.5	_1000	02010	01107	1000	1.0-	011
ethanol	488.5	26000	524.0	0.089	1150	0.77	7.9
	507.0				-	-	
methanol	505.5	26000	525.5	0.038	530	0.72	18.1
F ₃ -ethanol	481.0	26000	525.0	0.035	480	0.74	20.2
	504.0						

Scheme S1. Enamine-imine tautomeric equilibrium upon substitution by amine at position 6 (compound 9).

Figure S1. Absorption spectra of compound 3 in cyclohexane (a), acetone (b) and methanol (c).

Figure S2. Absorption spectra of compound **6** in cyclohexane (a), dioxane (b), ethyl acetate (c), ethanol (d) and trifluoroethanol (e).