Electric Supplemental Information for:

## Structure and Bifunctional Electrocatalytic Activity of A Novel 3D Framework Based on Dimeric Monocopper-Substituted Polyoxoanions as Ten-connected linkages †

Shaobin Li, Wei Zhu, Huiyuan Ma\*, Haijun Pang\*, Heng Liu and Tingting Yu

## Table of contents:

- 1. Table S1 Summarization of known hybrids based type II dimers.
- 2. Table S2 Selected bond lengths [Å] and bond angles [°] for compound 1.
- 3. Fig. S1 Schematic view of  $[Cu(en)_2]^{2+}$  complex as a 2-connected node and  $(PW_{11}Cu)_2$  dimer as a 10-connected node.
- 4. Chart S1 Structures of dap and en molecules.
- 5. Fig. S2 The IR spectrum of 1
- 6. Fig. S3 The simulative (black) and experimental (red) PXRD patterns of compound 1.
- 7. Fig. S4 TG curve of compound 1
- 8. Fig. S5 Cyclic voltammogram of 1-CPE
- 9. Fig. S6 Oxidation of AA and DA at 1-CPE in HAc-NaAc buffer solution in the potential range of 0.0 0.7 V.

| Compounds                                                                           | Connection number | Dimension of structures | References |
|-------------------------------------------------------------------------------------|-------------------|-------------------------|------------|
|                                                                                     | of the dimers     |                         |            |
| $[\{\gamma\text{-}SiTi_2W_{10}O_{36}(OH)_2\}_2(\mu\text{-}O)_2]^{8\text{-}}$        | 0                 | 0D                      | 24d        |
| $[\{\gamma\text{-}SiTi_2W_{10}O_{36}(OMe)_2\}_2(\mu\text{-}O)_2]^{8\text{-}}$       | 0                 | 0D                      | 24d        |
| $A\text{-}\alpha\text{-}[(SiNb_{3}W_{9}O_{38})_{2}(\mu\text{-}O)_{2}]^{10\text{-}}$ | 0                 | 0D                      | 24e        |
| $[Cu(dap)_2]_2 \{ [Cu(dap)_2]_2 [Cu(dap)_2] [PCuW_{11}O_{39}]_2 \}$                 | 4                 | 1 D                     | 24f        |

## Table S1 Summarization of known hybrids based type II dimers

| Table S2. The selected bong lengths (A) and angles (deg) for 1. |           |                  |           |  |
|-----------------------------------------------------------------|-----------|------------------|-----------|--|
| W(1)-O(21)                                                      | 1.707(16) | W(4)-O(14)       | 1.721(18) |  |
| W(1)-O(23)                                                      | 1.837(16) | W(4)-O(13)       | 1.78(2)   |  |
| W(1)-O(20)                                                      | 1.908(16) | W(4)-O(11)       | 1.857(15) |  |
| W(1)-O(22)                                                      | 1.960(14) | W(4)-O(16)       | 1.929(18) |  |
| W(1)-O(18)                                                      | 2.013(16) | W(5)-O(17)       | 1.70(2)   |  |
| W(2)-O(9)                                                       | 1.706(14) | W(5)-O(18)       | 1.894(19) |  |
| W(2)-O(2)                                                       | 1.828(15) | W(6)-O(10)       | 1.68(3)   |  |
| W(2)-O(20)                                                      | 1.906(16) | W(6)-O(8)        | 1.828(13) |  |
| W(2)-O(7)                                                       | 1.914(18) | W(6)-O(13)       | 1.95(2)   |  |
| W(2)-O(11)                                                      | 2.006(16) | W(6)-O(12)       | 2.43(2)   |  |
| W(2)-O(26)                                                      | 2.300(14) | W(7)-O(1)        | 1.844(5)  |  |
| W(3)-O(5)                                                       | 1.709(17) | W(7)-O(4)        | 1.929(8)  |  |
| W(3)-O(4)                                                       | 1.851(17) | W(7)-O(23)       | 1.942(16) |  |
| W(3)-O(6)                                                       | 1.891(5)  | W(7)-O(3)        | 1.948(17) |  |
| O(21)-W(1)-O(23)                                                | 101.8(8)  | O(20)-W(1)-O(19) | 85.1(6)   |  |
| O(21)-W(1)-O(20)                                                | 103.1(8)  | O(22)-W(1)-O(19) | 73.4(8)   |  |
| O(23)-W(1)-O(20)                                                | 91.5(7)   | O(9)-W(2)-O(2)   | 101.8(8)  |  |
| O(21)-W(1)-O(22)                                                | 97.4(9)   | O(9)-W(2)-O(20)  | 101.7(8)  |  |
| O(23)-W(1)-O(22)                                                | 91.3(8)   | O(2)-W(2)-O(20)  | 90.0(7)   |  |
| O(20)-W(1)-O(22)                                                | 158.3(8)  | O(9)-W(2)-O(7)   | 101.0(8)  |  |
| O(21)-W(1)-O(18)                                                | 96.9(9)   | O(2)-W(2)-O(7)   | 89.1(7)   |  |
| O(23)-W(1)-O(18)                                                | 161.1(8)  | O(20)-W(2)-O(7)  | 157.0(7)  |  |
| O(20)-W(1)-O(18)                                                | 86.2(7)   | O(9)-W(2)-O(11)  | 96.6(7)   |  |
| O(22)-W(1)-O(18)                                                | 84.1(8)   | O(2)-W(2)-O(11)  | 161.6(6)  |  |
| O(21)-W(1)-O(19)                                                | 165.6(8)  | O(20)-W(2)-O(11) | 85.2(6)   |  |
| O(23)-W(1)-O(19)                                                | 89.5(7)   | O(7)-W(2)-O(11)  | 88.4(7)   |  |

 $(h_{\alpha})$ . 1 nalas (dag) for 1 Table CO Th -1 4 1. 1.



Fig. S1. Schematic view of  $[Cu(en)_2]^{2+}$  complex as a 2-connected node and  $(PW_{11}Cu)_2$  dimer as a 10-connected node.





Fig. S2. The IR spectrum of 1.



Fig. S3. The simulative (black) and experimental (red) powder X-ray diffraction patterns for 1.



Fig. S4. The TG curve of 1.



Fig. S5. Cyclic voltammogram for 1-CPE in 0.2 M HAc-NaAc (pH=4.5) buffer solution at the scan rate of 50 mV  $\cdot$  s<sup>-1</sup>.



**Fig. S6** Oxidation of AA (left) and DA (right) at 1-CPE in HAc-NaAc buffer solution containing AA and DA in various concentrations (from inner to outer): 0.05, 0.10, 0.15, 0.20 mM. Scan rate: 0.05 V·s<sup>-1</sup>. The inset shows a linear dependence of the anodic catalytic current of wave I with AA and DA concentration.