

A new resonance Rayleigh scattering method for the determination of trace O₃ in air using rhodamine 6G as probe

Chenyin Lin, Guiqing Wen, Aihui Liang, Zhiliang Jiang*

(Key Laboratory of Ecology of Rare and Endangered Species and Environmental Conservation of Education Ministry; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology; Guangxi Normal University, Guilin 541004, China)

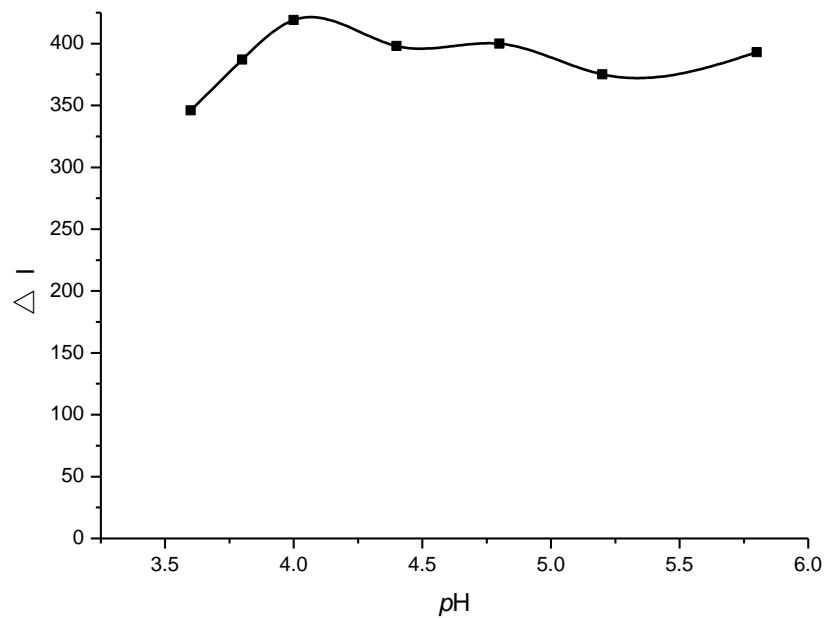


Fig. 1S Effect of HAc-NaAc buffer solution pH value on the ΔI
The RRS intensity at 418 nm of Rh6G associated particle (2.0mM BKI, 66.7 μ M Rh6G) in the presence of 20 μ M O₃.

Table 1S Comparison of some spectrophotometric methods for O_3

Methods	Principle	LR(μM)	DL (μM)	Comments	Ref.
Spectrophotometry	$O_3 + 3I^- + 2H^+ = I_3^- + O_2 + H_2O$	5-70	5	Simple, low sensitivity	2
Flow injection spectrophotometry	Based on the iodine-starch coloring at 580 nm.	8.3-220	8.3	Rapid, low sensitivity.	3
Spectrophotometry	Using the reaction between O_3 and bis(terpyridine)Fe(II).	1-400	1	Simple, sensitive.	28
Spectrophotometry	Based on sodium indigo disulfonate fading at 610 nm.	2.5-62.5	2.5	Simple, sensitive.	29
RRS	Based on the RRS effect of $(Rh6G-I_3)_n$ particle at 418 nm.	0.25-25	0.07	Sensitive, selective and rapid.	This method

Table 2S Effect of coexistence ions

Coexistent ions	Tolerance (mol/L)	Relative error (%)	Coexistent ions	Tolerance (mol/L)	Relative error (%)
NO_2^-	3.2×10^{-4}	5.0	H_2O_2	3.2×10^{-4}	6.0
Mn^{2+}	7.0×10^{-4}	-4.8	Ba^{2+}	6.0×10^{-4}	-5.4
Cu^{2+}	6.0×10^{-4}	-6.0	Fe^{3+}	8.5×10^{-5}	4.5
Ca^{2+}	6.5×10^{-4}	-5.2	Zn^{2+}	8.0×10^{-5}	-4.9
Mg^{2+}	6.5×10^{-4}	-4.2	SO_3^{2-}	8.0×10^{-5}	-4.8