Electronic supplementary information for RSC Adv.

Phosphonate-containing polystyrene copolymer-supported Ru catalyst for asymmetric transfer hydrogenation in water

Xiao Xu, Rui Wang, Jinwei Wan, Xuebing Ma^{*} and Jingdong Peng^{*}

College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China

1. General Remarks

All chemicals were purchased and used without any further purification. Fourier transform infrared spectra were recorded on Perkin–Elmer Model GX Spectrometer using a KBr pellet method with polystyrene as a standard. Thermogravimetric analysis (TGA) was performed on a SBTQ600 Thermal Analyzer (USA) with a heating rate of 20 °C min⁻¹ over a temperature range of 40–800 °C under flowing compressed N₂ (100 mL min⁻¹). ¹H, ¹³C and ³¹P NMR were performed on a Bruker AV-300 NMR instrument at 300.1, 75.0 and 121.5 MHz respectively, in which all chemical shifts were reported downfield in ppm relative to the hydrogen, carbon and phosphorus resonances of TMS, chloroform-d1 and H₃PO₄ (85 %) respectively. The morphologies of as-synthesized samples were determined by a Hitachi model H-800 transmission electron microscope (TEM). N₂ adsorption-desorption analysis was carried out at 77 K on an Autosorb-1 apparatus (Quantachrome). The specific surface areas and pore diameters were calculated by the B.E.T. and BJH model respectively. C, H, and N elemental analysis was obtained from an EATM 1112 automatic elemental analyzer instrument (Thermo, USA). Gel permeation chromatography (GPC) was performed using a 515 HPCC pump and a Waters styragel HT3 column (Mw 500-30,000) with a 2414 refractive index detector from Waters. Experiments were performed at 35 °C using THF as fluent, flow rate of 0.5 mL /min, and molecular weights are reported versus monodispersed polysaccharide standards. The enantiomeric excess (%ee) was determined on GC with a Chiral Cyclodex- B column (30 m× 0.25 nm×0.25 µm, Supelco) under 100 °C, 5 min, 5 °C · min⁻¹;140 °C, 15 min conditions. X-ray photoelectron spectroscopy measurements were carried out on a Physical Electronics ESCA 5701 instrument, equipped with a multichannel detector and a hemispherical analyzer. Mg Ka radiation (hm = 1253.6 eV) was used as the exciting source, and operated at a constant power of 300 W (15 kV, 20 mA). The data were acquired at a take-off angle of 45° and pass energy of 29.35 eV. The pressure in the analysis chamber was maintained at 8×10⁻⁷ Pa. Charge compensation was done with the

adventitious C 1 s peak at 284.8 eV.

2. The synthesis of 1a-b with different arm chain lengths

2.1 The synthesis of monomer 1a

(1) *p*-vinylbenzenesulfonyl chloride

A dried flask (150 mL) containing *p*-hydroxyanisole (50 mg, 0.4 mmol), 36 mL of DMF and 30 mL of SOCl₂ was stirred at 25°C for 10 min, cooled to 0°C, and then added *p*-vinylbenzene sulfonate sodium (10.30 g, 50.0 mmol) in three separate doses with a one-hour interval, stirred overnight and poured into ice-water with stirring. The reaction mixture was extracted with toluene (100 mL×3), washed with water (100 mL×3), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to afford the yellow liquid *p*-vinylbenzene sulfonyl chloride (1.9 g, 94%).

(2) (R, R)-N- p-vinylbenzenesulfonyl-1,2-diphenylethylene-1, 2-diamine (1a)

A dried flask (250 mL) containing (R, R)-1, 2-diphenylethylene-1, 2-diamine (6.4 g, 30.0 mmol was flushed three times with Ar₂ atmosphere, added 30 mL of CH_2Cl_2 , 24 mL of Et₃N, stirred for 20 min, and then added dropwise 20 mL of *p*-vinylbenzene sulfonyl chloride (6.5 g, 32.0 mmol) CH_2Cl_2 solution and stirred at 25°C for 24 h. The reaction mixture was washed with saturated NaHCO₃ solution, dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to afford light yellow solid. The crude solid was purified by flash column chromatography eluting with CHCl₃ to obtain the white product (R, R)-N-*p*-vinylbenzenesulfonyl-1,2-diphenylethylene-1, 2-diamine (**1a**) (7.4 g, 65%).

¹H NMR (300 MHz, DMSO) : δ 7.36-7.28 (Ar-H-16, 17, 19, 20, m, 4 H), 7.05 (Ar-H-10-14, s, 5 H), 6.92 (H-4-8, s, 5 H), 6.70-6.61 (H-21, dd, ³*J* = 17.6, 11.0 Hz, 1 H), 5.85 (H-22, d, ²*J* = 17.6 Hz, 1 H), 5.33 (H-22, d, ²*J* = 10.9 Hz, 1 H), 4.29 (H-2, d, ³*J* = 7.3 Hz, 1 H), 3.90 (H-1, d, ³*J* = 7.3 Hz, 1 H). ¹³C NMR (75 MHz, DMSO, TMS): δ 142.8 (C-15), 140.6 (C-18), 140.5, 140.1 (C-16, 17, 19, 20),

135.8 (21), 128.0, 127.9, 127.7, 127.6, 126.9, 126.7, 126.4 (C-3-8, 9-14), 117.4 (C-22), 65.1 (C-2), 60.9 (C-1). Anal. calcd for $C_{22}H_{22}N_2O_2S$: C, 69.81; H, 5.86; N, 7.40; O, 8.45; S, 8.47; Found: C, 69.80; H, 5.89; N, 7.38; O, 8.48; S, 8.43.

.2 The synthesis of monomer 1b

(1) (R,R)-N-(4-Nitrophenylsulfonyl)-1,2-diphenylethylenediamine

A dried flask (250 mL) containing (R, R)-1, 2-diphenylethylene-1, 2-diamine (4.3 g, 20.0 mmol) was flushed three times with Ar_2 atmosphere, added 80 mL of CH_2CI_2 , 5 mL of Et_3N , stirred for 20 min, cooled to 0°C and then added dropwise 20 mL of *p*-nitrobenzenesulfonyl chloride (6.5 g, 32.0 mmol) CH_2CI_2 solution and stirred at 25°C for 24 h. After evaporated under reduced pressure, the crude yellow solid was recrystallized in ethyl acetate to afford the white solid (R, R)-*N*-(4-nitrophenylsulfonyl)-1, 2-diphenylethylenediamine (5.9 g, 74%).

(2) (R,R)-N-Boc-N'-(4-Nitrophenylsulfonyl)-1,2-diphenylethylenediamine

A dried flask (250 mL) containing (R, R)-*N*-(4-nitrophenylsulfonyl)-1, 2-diphenylethylenediamine (3.2 g, 8.0 mmol) was added 100 mL of CH_2CI_2 , 6 mL of Et_3N , stirred at 25°C for 20 min, and then added dropwise 20 mL of $(Boc)_2O$ (4.7 g, 21 mmol) CH_2CI_2 solution. The reaction mixture was stirred at 25°C for 12 h, washed in turn with 10% citric acid aqueous solution (100 mL×3), water (100 mL×3), saturated sodium bicarbonate (100 mL×3) and saturated brine (100 mL×3). The organic phase was dried over anhydrous Na_2SO_4 and evaporated under reduced pressure to afford light yellow solid (R, R)-*N*-Boc-*N'*-(4-nitrophenylsulfonyl)-1, 2-diphenylethylenediamine (4.0 g, 98%).

(3) (R,R)-N-Boc-N'-(4-Aminophenylsulfonyl)-1,2-diphenylethylenediamine

A dried flask (100 mL) was added (R, R)-*N*-Boc-*N*'-(4-nitrophenylsulfonyl)-1, 2-diphenylethylenediamine (1.0 g, 2 mmol), HCO_2NH_4 (0.6 g, 10 mmol), 10% Pd/C (200 mg), flushed three times with Ar₂ atmosphere, and then added 30 mL of MeOH. The reaction mixture was stirred at 25°C for 2 h and evaporated under reduced pressure to afford the white solid (R, R)-*N*-Boc-*N*'-(4aminophenylsulfonyl)-1, 2-diphenylethylenediamine (0.8 g, 86%).

Above-mentioned three compounds were synthesized according to the reference: Y. C. Chen, T. F. Wu, J. G. Deng, H. Liu, X. Cui, J. Zhu, Y. Z. Jiang, M. C. K. Choi and A. S. C. Chan, *J. Org. Chem.* **2002**, *67*, 5301-5306.

(4) (R, R)-*N*-Boc-N'-[4-(*N''*-vinylbenzoyl)aminophenylsulfonyl]-1, 2-diphenylethylene-1, 2-diamine (DPEN-ABS-VBC)

A dried flask (150 mL) containing (R, R)-*N*-Boc-*N*'-(4-aminophenylsulfonyl)-1, 2-diphenylethylenediamine (0.9 g, 2.0 mmol) was flushed three times with Ar₂ atmosphere, added 40 mL THF and 4 mL of Et₃N, stirred for 10 min, cooled to 0°C. To the reaction mixture was added dropwise 5 mL of *p*-vinylbenzoyl chloride (0.6 g, 3.0 mmol) CH₂Cl₂ solution, stirred at 25°C for 24 h and evaporated under reduced pressure to remove THF. The crude product was dissolved in 50 mL of CH₂Cl₂ and washed in turn with 10% citric acid aqueous solution (50 mL×3), water (50 mL×3), saturated sodium bicarbonate (50 mL×3) and saturated brine (50 mL×3). The organic phase was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to afford white solid. The crude white solid was recrystallized in mixed ethyl acetate/*n*-hexane (v/v=1/3) to afford the white solid (R, R)-*N*-Boc-N'-[4-(*N''*-vinylbenzoyl)aminophenylsulfonyl]-1, 2-diphenylethylene-1, 2-diamine (0.7 g, 66%).

¹**H NMR (300 MHz, DMSO)** : δ 10.37 (NHCO, s, 1 H), 8.12 (NHCO, d, ${}^{3}J$ = 9.6 Hz, 1 H), 7.91 (H-18, d, ${}^{3}J$ = 8.1 Hz, 2 H), 7.61 (H-19, 24, d, ${}^{3}J$ =7.8 Hz, 4 H), 7.36-7.00 (H-6-10, 11-16, 25, m, 12 H), 6.84-6.75 (H-27, dd, ${}^{3}J$ =17.6, 11.0 Hz, 1 H), 5.97 (H-28, d, ${}^{3}J$ =17.7 Hz, 1 H), 5.39 (H-28, d, ${}^{3}J$ =11.0 Hz, 1 H), 4.78 (H-1, d, ${}^{3}J$ =6.1 Hz, 1 H), 3.93 (H-2, d, ${}^{3}J$ =6.1 Hz, 1 H).

¹³C NMR (75 MHz, DMSO, TMS): δ165.7 (C-22), 155.3 (C-21), 142.4, 140.8, 140.0, 139.8, 136.2, 136.0, 128.2 (C-5, 12, 27, 17, 20, 23, 26), 128.6, 128.2, 127.9, 127.5, 127.4, 127.2, 127.1, 126.5, 119.5 (C-6-10, 11, 12-16, 18, 19, 24, 25), 117.1 (C-28), 78.4 (C-3), 62.4, 59.5 (C-1, 2), 28.5

(C-4). Anal. calcd for $C_{34}H_{35}N_3O_4S$: C, 70.20; H, 6.06; N, 7.22; O, 11.00; S, 5.51; Found: C, 70.17; H, 6.11; N, 7.13; O, 11.12; S, 5.48.

(5) (R, R)- N-[4-(*N'*-vinylbenzoyl)aminophenylsulfonyl]-1, 2-diphenylethylene-1, 2-diamine (R, R) (1b)

To a flask (100 mL) was added (R, R)-*N*-Boc-N'-[4-(*N*"-vinylbenzoyl)aminophenylsulfonyl]-1, 2-diphenylethylene-1, 2-diamine (0.4 g, 0.6 mmol) and 30 mL of CH_2Cl_2 , stirred and cooled to 0°C, added dropwise 2.0 mL of CF_3CO_2H , and then stirred at 25°C for 12 h. The reaction mixture was adjusted to pH=9 by using 10% NaOH aqueous solution, and the solid was filtered. The aqueous phase was extracted by ethyl acetate (30 mL×3), and the combined organic phases were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to afford light yellow solid **1b** (0.3 g, 89%).

¹**H NMR (300 MHz, DMSO)** : $\overline{0}10.40$ (NHCO, s, 1 H), 7.92 (H-16,20, d, ${}^{3}J = 8.2$ Hz, 2 H), 7.69 (H-23, 27, d, ${}^{3}J = 8.8$ Hz, 2 H), 7.61 (H-17, 19, d, ${}^{3}J = 8.3$ Hz, 2 H), 7.39 (H-24, 26, d, ${}^{3}J = 8.7$ Hz, 2 H), 7.07 (H-10-14, s, 5 H), 6.97 (H-4-8, s, 5 H), 6.80 (H-28, dd, ${}^{3}J = 17.6$, 11.0 Hz, 1 H), 5.98 (H-29, d, ${}^{3}J =$ 17.7 Hz, 1 H), 5.39 (H-29, d, ${}^{3}J = 11.0$ Hz, 1 H), 4.31 (H-1, d, ${}^{3}J = 7.4$ Hz, 1 H), 3.93 (H-2, d, ${}^{3}J =$ 7.4 Hz, 1 H).

¹³C NMR (75 MHz, DMSO, TMS): $\overline{0}165.7$ (C-21), 142.9, 142.5, 140.9, 140.4, 136,2, 136.1, 133.8 (C-18, 3, 9, 22, 15, 25, 28), 128.6, 128.0, 127.8, 127.7, 127.5, 127.0, 126.9, 126.5, 119.7 (C-4-8 $\ 10-14\ 23\ 24\ 26\ 27$, 16, 17, 19, 20), 117.1 (C-29), 65.2 (C-2), 61.1 (C-1). Anal. calcd for C₂₉H₂₇N₃O₃S: C, 70.00; H, 5.47; N, 8.44; O, 9.65; S, 6.44; Found: C, 69.92; H, 5.52; N, 8.40; O, 9.71; S, 6.39.

2.3 The synthesis of monomers 1c and 1d

(1) DPEN-Boc-Aps-Amide-Cbz

A dried flask (50 mL) containing (R, R)-*N*-Boc-*N*'-(4- aminophenylsulfonyl)-1, 2-diphenylethylenediamine (0.24 g, 0.5 mmol) and Cbz-NHCH₂CO₂H (0.16 g, 0.8 mmol) was added 10 mL of NMM (0.09 g, 0.9 mmol) THF solution, cooled to 0°C, added dropwise 5 mL of IBCF (0.16 g, 0.8 mmol) THF solution and stirred at 25°C for 24 h. After evaporated under reduced pressure, the reaction residues was added 20 mL of water, extracted by ethyl acetate (30 mL×3). The combined organic phase was washed in turn with 10% citric acid aqueous solution (50 mL×3), water (50 mL×3), saturated sodium bicarbonate (50 mL×3) and saturated brine (50 mL×3), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to afford white solid. The crude white solid was recrystallized in mixed ethyl acetate/*n*-hexane (v/v=1/3) to obtain DPEN-Boc-Aps-Amide-Cbz (n=1) (0.24 g, 71%).

¹H NMR (300.1 MHz, DMSO) : δ 10.15 (NHCO, s, 1 H), 8.10 (HNCO, d, ³*J* = 9.6 Hz, 1 H), 7.57 (HNCO, t, ³*J* = 6.0 Hz, 1 H), 7.40–7.00 (Ar-H, HNCO, m, 19 H), 5.03 (H-29, s, 2 H), 4.81–4.77 (H-1, m, 1 H), 4.65-4.60 (H-2, m, 1 H), 3.79 (H-27, d, ³*J* = 6.1 Hz, 2 H), 1.02 (H-17-19, s, 9 H). ¹³C NMR (75.0 MHz, DMSO, TMS): δ 168.8 (C-28), 157.0 (C-15), 155.3 (C-26), 142.0, 140.8, 139.8,

137.4, 135.7 (C-20, 3, 9, 23, 30), 128.7, 128.1, 127.9, 127.5, 127.4, 127.1, 127.0, 118.5 (C-4-8, 10-14, 21, 22, 24, 25, 31-35), 78.4 (C-16), 65.9 (C-29), 62.5 (C-2), 59.5 (C-1), 44.5 (C-27), 28.5 (C-17-19). Anal. calcd for $C_{35}H_{38}N_4O_7S$: C, 63.81; H, 5.81; N, 8.50; O, 17.00; S, 4.87; Found: C, 63.79; H, 5.82; N, 8.43; O, 8.51; S, 4.79.

According to the same procedure, DPEN-Boc-Aps- Amide-Cbz (n=2) (0.28 g,73%) was obtained.

¹H NMR (300.1 MHz, DMSO) : δ10.12 (NHCO, s, 1 H), 8.09 (NHCO, d, 1 H), 7.40 – 7.00 (NHCO, Ar-H, m, 21 H), 4.99 (H-30, s, 2 H), 4.81-4.76

6

(H-1, m, 1 H), 4.64-4.59 (H-2, m, 1 H), 3.26 (H-28, t, ${}^{3}J$ = 7.5 Hz, 2 H), 2.49 (H-27, t, ${}^{3}J$ = 7.5 Hz, 2 H), 1.24 (H-17-19, s, 9 H). 13 C NMR (75.0 MHz, DMSO, TMS): $\overline{0}$ 170.1 (C-29), 156.5 (C-15), 155.3 (C-26), 142.3, 140.8, 139.9, 137.5, 135.5 (C-3, 9, 20, 23, 31), 128.7, 128.1, 128.0, 127.9, 127.5, 127.4,

127.1, 118.5 (C-4-8, 10-14, 21, 22, 32-36), 78.4

 $(C-16),\, 65.6\; (C-30),\, 62.5\; (C-2),\, 59.5\; (C-1),\, 39.0\; (C-28),\, 37.1\; (C-27),\, 28.5\; (C-17-19). \mbox{ Anal.} \mbox{calcd for } C_{36}H_{40}N_4O_7S;\, C,\, 64.27;\, H,\, 5.99;\, N,\, 8.33;\, O,\, 16.65;\, S,\, 4.77;\, Found:\, C,\, 64.23;\, H,\, 6.02;\, N,\, 8.27;\, O,\, 8.38;\, S,\, 4.70.$

(2) DPEN-Boc-Aps-Amide-Amino

A dried flask (100 mL) containing DPEN-Boc-Aps-Amide-Cbz (n=1) (0.66 g, 1.0 mmol), 10% Pd/C (500 mg) was flushed three times with H₂ atmosphere, added 50 mL of MeOH with a syringe, and then stirred at 25°C for 12 h. The reaction mixture was filtered to recover the Pd/C catalyst and evaporated under reduced pressure to afford white solid. The crude product was purified by flash column chromatography eluting with CHCl₃/MeOH (v/v=100/1) to obtain the white product **DPEN-Boc-Aps-Amide-Amino** (n=1) (0.20 g, 89%).

¹H NMR (300.1 MHz, DMSO) : δ 7.43 (H-21, 25, d, ³J = 8.4 Hz, 2 H), 7.19 – 6.99 (H-4-8, 10-14, 22, 24, m, 12 H), 4.75 (H-1, d, ³J = 7.4 Hz, 1 H), 4.59 (H-2, d, ³J = 5.7 Hz, 1 H), 2.47 (H-27, s, 2 H), 1.23 (H-17-19, s, 9 H). ¹³C NMR (75.0 MHz, DMSO, TMS): δ 173.1 (C-15), 155.3 (C-26), 141.9, 141.0, 140.2, 136.0 (C-20, 3, 9, 23), 128.1, 127.8, 127.5, 127.4, 127.0, 118.4 (C-4-8, 10-14, 22, 24), 78.3 (C-16), 62.6 (C-2), 59.7 (C-1), 46.0 (C-27), 28.5 (C-17-19). Anal. calcd for C₂₇H₃₂N₄O₅S: C, 61.81; H, 6.15; N, 10.68; O, 15.25; S, 6.11; Found: C, 61.76; H, 6.22; N, 10.57; O, 15.32; S, 6.04.

According to the same procedure, **DPEN-Boc-Aps-Amide-Amino** (n=2) (0.19 g, 85 %) was obtained.

¹H NMR (300.1 MHz, DMSO) : δ 7.39 (H-21, NHCO,

25, d, ${}^{3}J$ = 7.5 Hz, 4 H), 7.19–7.00 (H-4-8, 10-14, 22, 24, m, 12 H), 4.77 (H-1, d, ${}^{3}J$ = 7.2 Hz, 1 H), 4.61 (H-2, d, ${}^{3}J$ =5.4 Hz, 1 H), 2.84 (H-27, 28, s, 4 H), 1.23 (H-17-19, s, 9 H). 13 C NMR (75 MHz, DMSO, TMS): δ 171.1 (C-15), 155.3 (C-26), 142.4, 140.9, 139.9, 135.5 (C-20, 23, 3, 9), 128.1, 127.9, 127.5, 127.3, 127.0, 126.9, 118.5(C-4-8, 10-14, 21, 22, 24, 25), 78.3 (C-16), 62.5 (C-2), 59.5 (C-1), 49.0 (C-28), 37.7 (C-27), 28.5 (C-17-19). Anal. calcd for

C₂₈H₃₄N₄O₅S: C, 62.43; H, 6.36; N, 10.40; O, 14.85; S, 5.95; Found: C, 62.36; H, 6.42; N, 10.36; O, 14.91; S, 5.87.

(3) DPEN-Boc-Aps-Amide-Abc

To a dried flask (25 mL) was added in sequence p-vinylbenzoic acid (37 mg, 0.25 mmol), DCC (37 mg, 0.25 mmol), HOBt (42 mg, 0.28 mmol), DIPEA (32 mg, 0.25 mmol) and 5 mL of THF. After stirred at 0°C for 30 min, the reaction mixture was added dropwise **DPEN-Boc-Aps-Amide-Amino** (n=1) (0.16 g, 0.3 mmol) and stirred at 25°C for 12 h. After evaporated under reduced pressure, the reaction residues were added 30 mL of ethyl acetate. The organic phase was washed in turn with 10% citric acid aqueous solution (50 mL×3), water (50 mL×3), saturated sodium bicarbonate (50 mL×3) and saturated brine (50 mL×3), dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to afford light yellow solid **DPEN-Boc-Aps-Amide-Abc** (n=1) (0.13 g, 76%).

¹H NMR (300.1 MHz, DMSO) : δ 10.26 (NHCO, s, 1 H), 8.86 (HNCO, t, ³*J*=3.4 Hz, 1 H), 8.12 (NHCO, d, ³*J*=9.4 Hz,1 H), 7.86 (H-21, 25, d, ³*J*=7.8 Hz, 2 H), 7.57 (H-22, 24, d, ³*J*=7.8 Hz, 2 H), 7.39 (H-30, 34, d, ³*J*=8.4 Hz, 2 H), 7.21-7.00 (H-4-8, 10-14, 32, 34, m, 12 H), 6.82-6.73 (H-35, m, 1 H), 5.95 (H-36, d, ³*J*=17.7 Hz, 1 H), 5.35 (H-36, d, ³*J*=10.5 Hz, 1 H), 4.78 (H-2, d, ³*J*=7.8 Hz, 1 H), 4.63 (H-1, d, ³*J*=8.4 Hz, 1 H), 4.05 (H-27, s, 2 H), 1.24 (H-17-19, s, 9 H).

¹³ C NMR (75.0 MHz, DMSO, TMS): δ 168.6(C-15), 166.6 (C-28), 155.2 (C-26), 141.9,
140.8, 140.4, 139.8, 136.3, 135.6, 133.4 (C-3, 9, 20, 23, 29, 32, 35), 128.2, 127.9, 127.5, 127.4,
127.1, 127.0, 126.3, 118.5 (C-4-8, 10-14, 21, 22, 30, 31), 116.5 (C-36), 78.4 (C-16), 62.3 (C-2),

59.5 (C-1), 47.7 (C-27), 28.5 (C-17-19). Anal. calcd for C₃₆H₃₈N₄O₆S: C, 66.04; H, 5.85; N, 8.56; O, 14.66; S, 4.90; Found: C, 65.96; H, 5.89; N, 8.49; O, 14.71; S, 4.86.

According to the same procedure, **DPEN-Boc-Aps-Amide-Abc** (n=2) (0.15 g, 75%) was obtained.

¹H NMR (300.1 MHz, DMSO) : δ 10.15 (NHCO, s, 1 H), 8.58 (HNCO, t, ³*J*=3.4 Hz, 1 H), 7.78 (H-21, 25, d, ³*J* = 8.2 Hz, 2 H), 7.52 (H-22, 24, d, ³*J*=8.2 Hz, 2 H), 7.39 (H-31, 35, d, ³*J*=8.7 Hz, 2 H), 7.28-6.97 (H-4-8, 10-14, 32, 34, NHCO, 14 H), 6.79-6.69 (H-36, m, 1 H), 5.90 (H-37, d, ³*J*= 17.1 Hz, 1 H), 5.32 (H-27, d, ³*J*=11.1 Hz, 1 H), 4.79 (H-2, d, ³*J*=7.2 Hz, 1 H), 4.60 (H-1, d, ³*J* = 6.3 Hz, 1 H), 3.52 (H-28, t, ³*J*=5.7 Hz, 2 H), 2.61

(H-27, t, ³*J*=6.6 Hz, 2 H), 1.23 (H-17-19, s, 9 H). ¹³ C NMR (75.0 MHz, DMSO, TMS): δ 170.3 (C-15), 166.3 (C-29), 155.3 (C-26), 142.2, 140.8, 140.1, 139.8, 136.3, 135.5, 134.0 (C-3, 9, 20, 23, 30, 33, 36), 128.1, 127.9, 127.5, 127.4, 127.1, 127.0, 126.3, 118.4 (C-4-8, 10-14, 21, 22, 31, 32), 116.5 (C-37), 78.4 (C-16), 62.3 (C-2), 59.5 (C-1), 36.7 (C-28), 36.2 (C-27), 28.5 (C-17-19). Anal. calcd for $C_{37}H_{40}N_4O_6S$: C, 66.45; H, 6.03; N, 8.38; O, 14.35; S, 4.79; Found: C, 66.38; H, 6.08; N, 8.34; O, 14.39; S, 4.76.

(4) Monomers 1c and 1d

To a flask (100 mL) was added **DPEN-Boc-Aps-Amide-Abc** (n=1) (0.20 g, 0.3 mmol) and 40 mL of CH_2Cl_2 , stirred and cooled to 0°C, added dropwise 1.4 mL of CF_3CO_2H , and then stirred at 25°C for 12 h. The reaction mixture was adjusted to pH=9 by using 10% NaOH aqueous solution, and the precipitate was filtered. The aqueous phase was extracted by ethyl acetate (50 mL×3), and the combined organic phases were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to afford light yellow solid **1c** (0.15 g, 90%).

¹H NMR (300 MHz, DMSO): δ 10.31 (NHCO, s, 1 H), 8.84 (NHCO, t, ³*J*=5.6 Hz, 1 H), 7.85 (H-16, 20, d, ³*J*=8.2 Hz, 2 H), 7.56 (H-17, 19, d, ³*J*=8.3 Hz, 2 H), 7.42 (H-25, 29, d, ³*J* =8.7 Hz, 2 H), 7.33 (H-26, 28, d, ³*J* = 8.7 Hz, 2 H), 7.21-6.85 (H-4-8, 10-14, m, 10 H), 6.79-6.70 (H-30, dd, ³*J* =17.7, 11.0 Hz, 1 H), 5.94 (H-31, d, ³*J*=29.5 Hz, 1 H), 5.35 (H-31, d, ³*J*=11.1 Hz, 1 H), 4.48 (H-2, d, ${}^{3}J=7.5$ Hz, 1 H), 4.22 (H-1, d, ${}^{3}J=7.5$ Hz, 2 H), 4.02 (H-22, d, ${}^{3}J=6.4$ Hz, 2 H). 13 C NMR (75.0 MHz, DMSO): δ 166.6 (C-21), 157.0 (C-23), 141.9, 140.8, 140.4, 139.8, 136.3, 135.6, 133.4 (C-3, 9, 15, 18, 24, 27, 30), 128.2, 127.9, 127.5, 127.4, 127.1, 127.0, 126.3, 118.5 (C-4-8, 10-14, 16, 17, 25, 26), 116.5 (C-31), 62.3 (C-2), 59.5 (C-1), 47.7 (C-22). Anal. calcd for C₃₁H₃₀N₄O₄S: C, 67.13; H, 5.45; N, 10.10; O, 11.54; S, 5.78; Found: C, 67.10; H, 5.49; N, 10.09; O, 11.59; S, 5.76.

According to the same procedure, 1d (0.14 g, 86 %) was obtained.

¹H NMR (300 MHz, DMSO) : δ 10.16 (NHSO₂, s, 1 H), 8.58 (HNCO, t, ³*J*=5.4 Hz, 1 H), 7.79 (H-16, 20, d, ³*J*=8.1 Hz, 2 H), 7.52 (H-17, 19, d, ³*J*=8.1 Hz, 2 H), 7.46 (H-26, 30, d, ³*J*=8.7 Hz, 2 H), 7.31(H-27, 29, d, ³*J* = 8.7 Hz, 2 H), 7.21-6.92 (H-4-8, 10-14, m, 10 H), 6.79-6.70 (H-31, dd, ³*J*=17.7, 11.0 Hz, 1 H), 5.91 (H-32, d, ³*J*=29.5 Hz, 1 H), 5.33 (H-32, d, ³*J*=11.1 Hz, 1 H), 4.28 (H-2, d, ³*J*=7.5 Hz, 1 H), 3.93 (H-1, d, ³*J*=

7.5 Hz, 2 H), 3.54-3.50 (H-23, m, 2 H), 2.61 (H-22, t,

³*J*=6.6 Hz, 2 H). ¹³ C NMR (75.0 MHz, DMSO, TMS): δ170.2 (C-21), 166.1 (C-24), 142.2, 142.1, 139.9, 139.8, 136.1, 135.2, 133.8 (C-3, 9, 15, 18, 25, 28, 31), 127.8, 127.7, 127.5, 127.4, 126.8, 126.8, 126.1, 118.3 (C-4-8, 10-14, 16, 17, 26, 27), 116.3 (C-32), 64.9 (C-2), 60.7 (C-1), 56.7 (C-23), 35.8 (C-22). Anal. calcd for $C_{32}H_{32}N_4O_4S$: C, 67.58; H, 5.67; N, 9.85; O, 11.25; S, 5.64; Found: C, 67.53; H, 5.73; N, 9.84; O, 11.32; S, 5.56.

3. Synthesis of phosphonate-containing polystyrene copolymers

3.1 Synthesis of 2a-d

A dried flask (25 mL) containing **1a** (75.6 mg, 0.2 mmol) and 1-phosphonate styrene (184.0 mg, 1.0 mmol) was flushed three times with Ar_2 atmosphere, added 5 mL of THF and benzoy peroxide

(BPO) (20.0 mg, 0.08 mmol) and heated to 80°C for 24 h. During the reaction process benzoy peroxide (5.0 mg) was added at eight hours interval. The reaction mixture was filtered, washed with THF (5 mLx3), ethyl acetate (5 mLx3) and acetone (5 mLx3) and dried at 60°C in a vacuum tank to afford white solid **2a** (105 mg, 40%).

The molar ratio of **1b-d** to 1-phosphonate styrene at 1:5 was maintained, the other phosphonate-containing polystyrene copolymers **2b-d** were prepared according to the procedure metioned above (Table 1).

Entry	The used amount of 1a-d (mg/mol)	1-phosphonate styrene (mg/mol)	molar ratio	Yield (mg/%)	y/x value
1a	75.6/0.2	147.2/1	1:4	105/47.1	3.66/1
1b	99.4/0.2	147.2/1	1:4	152/61.6	3.72/1
1c	43.0/0.08	58.9/0.32	1:4	90/88.3	3.92/1
1d	45.0/0.08	58.9/0.32	1:4	84/80.8	4.08/1

Table 1 The yields of phosphonate-containing polystyrene copolymers 1a-d

3.2 Synthesis of 2a₁-a₄

A dried flask (25 mL) containing **1a** (151.4 mg, 0.4 mmol) and 1-phosphonate styrene (80.8 mg, 0.4 mmol) was flushed three times with Ar_2 atmosphere, added 5 mL of THF and benzoy peroxide (BPO) (20.0 mg, 0.08 mmol) and slowly heated to 80°C for 24 h. During the reaction process benzoy peroxide (5.0 mg) was added at eight hours interval. The reaction mixture was filtered, washed with THF (5 mL×3), ethyl acetate (5 mL×3) and acetone (5 mL×3) and dried at 60°C in a vacuum tank to afford white solid **2a**₂ (105 mg, 40%).

According to the procedure metioned above, the other phosphonate-containing polystyrene copolymers $2a_1-a_4$ were prepared at 4:1, 1:4 and 1:8 molar ratio of 1a to 1-phosphonate styrene (Table 2).

Fable 2 The yields of phosphonate	e-containing polystyrene	copolymers 2a1-a4
-----------------------------------	--------------------------	-------------------

Entry	Used amount of 1a (mg/mol)	1-phosphonate styrene (mg/mol)	molar ratio	Yield (mg/%)	y/x value
-------	----------------------------------	--------------------------------------	-------------	-----------------	-----------

2a₁	151.4/0.4	20.2/0.1	4:1	108.1/63.0	0.21/1
2a₂	151.4/0.4	80.8/0.4	1:1	167.5/72.1	0.78/1
2a₃ (2a)	151.4/0.4	323.2/1.6	1:4	220.3/46.4	3.66/1
2a₄	151.4/0.4	646.4/3.2	1:8	105.2/13.1	6.78/1

3.3 Characterization of 2a₁-a₄

(1) ³¹P NMR of 2a₁-a₄

Due to NMR characteristic of phosphorus, it was easier to determine the structural feature and composition of phosphonate-containing polystyrene copolymer by ³¹P NMR than other non-phosphonate-containing copolymer. ³¹P NMR spectra of $2a_1-a_4$ were shown **Fig.S1-1**. It was noted that 1-phosphonate styrene self-polymers prepared under the same conditions showed four groups of ³¹P NMR peaks at 13.0-13.5 (m), 5.7 (s), 0.9 (s) and 0.3 (s) ppm, which illustrated four different structural arrangements of phosphonate (-PO₃H₂) by means of self polymerization. However, after 1-phosphonate styrene copolymerized with polystyrene, a new and wide ³¹P NMR peak of phosphonate-containing polystyrene copolymers $2a_1-a_4$ emerged in the range of 19.0-31.0 ppm, which was attributed to the newly generated chains upon the copolymerization of 1-phosphonate styrene with polystyrene (**Fig.S1-1**).

Fig.S1-1. The ³¹P NMR spectra of 1-phosphonate styrene self-polymer

Fig.S1-2. The 31 P NMR spectra of phosphonate-containing polystyrene copolymers $2a_1-a_4$

(2) Quantitative ³¹P NMR

Due to P-31 high natural abundance and magnetic resonance sensitivity as hydrogen, ³¹P NMR was used as a quantitative method to determine the phosphorus content in copolymers $2a_1-a_4$. Determination procedure: In sample tube was quantitatively charged phosphonate-containing copolymer $2a_4$ (m_s) and added 0.5 mL of d₆-DMSO. After completely dissolved in d₆-DMSO, 85% H₃PO₄ (m₁) was quantitatively charged, mixed well and then ³¹P NMR were performed on a Bruker AV–300 NMR instrument at 121.511 MHz. As an example, the ³¹P NMR spectra of $2a_4$ and sample (85% H₃PO₄ + $2a_4$) was shown in Fig.S2.

Fig.S2. The ³¹P NMR spectra of $2a_4$ and sample (85% H₃PO₄ + $2a_4$)

The chemical compositions (x/y) in the copolymers $2a_1-a_4$ could be determined by ³¹P NMR method. By the comparative investigation of ³¹P NMR of $2a_4$ and sample (85% H₃PO₄ + $2a_4$), the inreased peak area at 0.7 ppm was attributed to the added H₃PO₄ (85%). Then, the x and y values could be calculated according to the following equations.

The chemical compositions (x/y) of the copolymers **2a-b** and **2a₁-a₄** were calculated and shown in Table 1 and Table 2.

(3) Determination of molecular weights of 2a1-a4

Gel permeation chromatography (GPC) was performed using a 515 HPCC pump and a Waters styragel HT3 column (Mw 2000-1000,000) with a 2414 refractive index detector from Waters. Experiments were performed at 35 °C using THF as fluent, flow rate of 0.7 mL /min, and molecular weights are reported versus monodispersed polysaccharide standards. From Fig.S3, it was found that the weight-average molecular weights (M_n) of the copolymers $2a_1-a_4$ increased as the increase of y values, and then decreased at y=3.66 between 595.2 and 916.6 kDa. The good PDI values between 1.06 and 1.28, which illustrated controlled molecular weight and narrow polydispersity, were obtained under a mild and easily operating experiment conditions.

Fig.S3. The GPC spectra of the copolymers 2a1-a4

(4) TGA

On heating the copolymers $2a_1-a_4$, the similar thermolysis curves over a broad temperature range of 40–800 °C with a three-step weight loss behavior were observed, which were shown in **Fig. S4**. The first slope curve of $2a_1-a_4$ below 150 °C was attributed to the desorption of the surface-bound or intercalated water in the pores with weight losses of 3.8, 3.8, 3.2 and 3.1 wt.% respectively, followed by the sharp second curve with a single DTG peak between 150 and 330 °C, while the third stage appeared from 330 to 700 °C. From **Fig. S4**, it was found that the second weight losses successively decreased from 30.8 to 17.1%. On the contrary, the third weight losses increased from 33.0 to 57.9%. This could be due to an association with the mount of 1-phosphonate styrene fragments (y value). Owing to the higher y value of $2a_4$, it possessed the more weight loss in the third curve, which was accordance with the composition of phosphonate-containing polystyrene copolymer determined by ³¹P NMR.

Fig.S4. The thermal gravimetric curves of the copolymers 2a1-a4

(5) Surface morphology

As an example, the copolymer **2a**₃ was well clarified by AFM (**Fig.S5-1**) and SEM (**Fig.S5-2**) to understand the surface morphology and particle size. After being well-dispersed in water (1 mg sample in 5 mL of H₂O) for 10 min under ultrasonic radiation, a thin film of the suspension on mica was prepared by spin coating, and the particles were left on the mica surface after volatilization of water for three days. Due to being well-dispersed in water, the AFM images could be identified as being efficiently elaborated the surface morphology of the copolymer **2a**₃ in aqueous solution, which seemed to simulate the "true" states of **2a**₃ in water. From **Fig.S5-2**, it can be seen that the aggregates were observed with 0.58 nm mean height, 390.1 nm mean length and 112.5 nm mean width. The SEM images showed that the aggregates with 1-5 um in size dispered in THF could be considered to mirror surface morphology of **2a**₃ in solid state.

Fig.S5-1. The AFM images of the copolymer 2a₃

Fig.S5-2. The SEM images of the copolymer 2a₃

(6) Porous structure

The nitrogen adsorption–adsorption isotherm plots of $2a_1-a_4$, performed at 77 K, were shown in Fig. S6. The isotherm plots of $2a_1-a_4$ were linear to the P/P₀ axis at relative low P/P₀ range (0~0.8)

and convex to the P/P₀ axis at high P/P₀ range (0.8~1.0), which were beyond to the classic definitions. From the calculated data in Table 3 and Fig.S6, these pore size distributions (PSDs) of as-synthesized $2a_1-a_4$ suggested the existence of 0.8-10 nm irregular micropores, having two sharp peaks at about 1.2 and 2.0 nm. As expected, the surface areas, average pore diameters and pore volumes of $2a_1-a_4$ increased from 3.1 to 8.3 m² g⁻¹, 8.1 to 10.2 Å and 1.2 to 8.3×10^{-3} cc/g, respectively with the increase of the content of 1-phosphonate styrene (y) in the copolymers $2a_1-a_4$ from 0.21 to 6.78. Thus it can be seen that the introduction of functional phosphonate groups was advantageous to the construction of pore structure owing to the action of hydrogen bond between phosphonate groups.

Fig.S6. Nitrogen adsorption-desorption isotherm plots obtained with 2a1-a4

Entry	Surface Area [m²/g] ^b	Average Pore Diameter [Å] ^c	Pore Volume [10 ⁻³ cc/g] ^d
2a₁	3.1	8.1	1.2
2a ₂	3.3	7.0	4.6
2a₃(2a)	5.0	9.2	6.1
2a₄	8.3	10.2	8.3

Table 3 The mesoporous properties of the as-synthesized $2a_1 - a_4^a$

^a The sample was degassed at 100 °C for 5 h. ^b based on multipoint BET method. ^c Based on the desorption data using BJH method. ^d Based on the desorption data of BJH method.

4. Preparation of copolymer-supported Ru catalysts

4.1. Preparation of copolymer-supported Ru catalyst 3a-d

A dried flask (25 mL) containing **2a** (20.0 mg) and $[RuCl_2(p-cymene)]_2$ (9.0 mg, 0.015 mmol) was flushed three times with Ar₂ atmosphere, added 0.4 mL of Et₃N and 5 mL of methyl cyanide, stirred and heated to 82 °C for 5 h (the color of the solution changed from orange to yellow). The orange solid was filtered, washed with CH₂Cl₂ (5 mL×3) and dried at 40°C in a vacuum tank to afford copolymer-supported Ru catalyst **3a** in 72.4% yield.

According to the same procedure, the other copolymer-supported Ru catalysts **3b-d** were prepared in 74.1-76.0% yields.

4.2. Preparation of copolymer-supported Ru catalysts 3a1-a4

A dried flask (25 mL) containing $2a_1$ (20.0 mg) and $[RuCl_2(p-cymene)]_2$ (9.0 mg, 0.015 mmol) was flushed three times with Ar₂ atmosphere, added 0.4 mL of Et₃N and 5 mL of methyl cyanide, stirred and heated to 82 °C for 5 h (the color of the solution changed from orange to yellow). The orange solid was filtered, washed with CH₂Cl₂ (5 mL×3) and dried at 40°C in a vacuum tank to afford copolymer-supported Ru catalyst $3a_1$ in 75.9% yield.

According to the same procedure, the other copolymer-supported Ru catalysts $3a_2-a_4$ were prepared in 76.1-78.5% yields.

4.3 Characterization of 3a1-a4

(1) XPS spectra

The contents of immobolized ruthenium in **3a-d** and **3a₁-a₄** were determined by X-ray photoelectron spectroscopy measurement (XPS). The XPS spectra and data were carried out on a Physical Electronics ESCA 5701 instrument, equipped with a multichannel detector and a hemispherical analyzer. Mg Ka radiation (hm = 1253.6 eV) was used as the exciting source, and operated at a constant power of 300 W (15 kV, 20 mA). The data were acquired at a take-off angle of 45° and pass energy of 29.35 eV. The pressure in the analysis chamber was maintained at 8×10^{-7} Pa. Charge compensation was done with the adventitious C 1 s peak at 284.8 eV. As an example, the spectra of support **2a**₃ and its supported Ru catalyst **3a**₃ were shown in **Fig.S7** and **Table 4**.

Fig.S7-1. The XPS spectra of support 2a₃

Sample	C _{1s} /wt.%	Cl _{2p} /wt.%	N _{1s} /wt.%	O _{1s} /wt.%	P _{2p} /wt.%	S _{2p} /wt.%	Ru _{3d} /wt.%
2a ₃	167.9/71.0		399.8/3.5	532.2/17.7	132.9/5.5	167.9/2.3	
3a ₃	168.2/77.5	197.9/0.6	401.1/3.5	532.1/12.2	133.1/2.7	168.1/2.1	284.7/1.4

Fig.S8 IR spectra of copolymer-supported Ru catalysts 3a1-a4

After RuCl₂(*p*-cymene)]₂ was stirred with $2a_1-a_4$ at 82 °C in 0.4 mL of Et₃N and 5 mL of methyl cyanide, there are two major changes in IR spectra of $3a_1-a_4$. First, from Fig.S8, it was found that IR spectra in the range of 1570-1640 cm⁻¹ were strengthened markedly, which resulted from Ar-H stretching vibration in *p*-cymene moiety and indirectly illustrated that Ru had been immobolized onto the backbone of supports $2a_1-a_4$. Secondly, the characteristic stretching vibration of PO₃H₂ in the range of 1000-1200 cm⁻¹ were reshaped and became two absorption peaks at 1155 and 1058 cm⁻¹ with equal absorbing intensity, which was related to the decreased formation of hydrogen bond between PO₃H₂ and NH₂ groups upon the coordination reaction of RuCl₂(*p*-cymene)]₂ with NH₂ groups.

Fig.S9. The thermal gravimetric curves of copolymers-supported Ru catalysts 3a1-a4

On heating supported Ru catalysts $3a_1-a_4$ as the copolymers $2a_1-a_4$, the first slope curves of $3a_1-a_4$ below 150 °C showed that the desorption of the surface-bound or intercalated water in the pores increased from 3.1-3.9 to 5.8-9.3 wt%. Furthermore, the total weight losses of $3a_1-a_4$ in the temperature range of 150-800 °C also increased from 58.7-75.0 to 86.5-90.8 wt%.

(4) Surface morphology

Fig.S10-1. The AFM images of the copolymer 3a₃

Fig.S10-2. The SEM images of the copolymer 3a₃

As an example, the copolymer-supported Ru catalyst **3a**₃ was well clarified by AFM (**Fig.S10-1**) and SEM (**Fig.S10-2**) to understand the surface morphology and particle size. After being well-dispersed in water, it can be seen that the mean width and height of supported Ru catalyst **3a**₃ increased from 112.5 and 0.58 nm to 138.6 and 1.9 nm respectively, compared with copolymer support **2a**₃. However, its mean length decreased from 390.1 to 179.7nm. The SEM images showed the powder **2a**₃ dispersed in THF consisted of primary particles of approximately 1-8 um in size, which mirrored surface morphology of **2a**₃ in poor solvent.

(5) Porous structure

Fig.S11. Nitrogen adsorption-desorption isotherm plots obtained with 3a1-a4

Upon the immobilization of $[RuCl_2(p-cymene)]_2$ into polystyrene copolymers $2a_1-a_4$, some nanopores in the range of 0.8-8 nm disappeared, especially at about 6.4 nm, which demonstrated that $[RuCl_2(p-cymene)]_2$ particles had been trapped inside those nanopores. It was particularly worth noting that four typical nanopores inside $2a_1-a_4$ at about 0.6-0.7, 1.0-1.3, 1.8-2.4 and 3.2-4.0 nm were reconstructed. Those nanopores beneficially provided the diffusional channels for substrates to smoothly access the catalytic sites of the trapped Ru(p-cymene) in the catalytic process.

4.4 Asymmetric transfer hydrogenation in water

A dried flask (25 mL) containing **3a**₃ (1.4 wt%, 15.0 mg, 2.1×10^{-3} mmol) was added 0.5 mL of HCO₂H/Et₃N (HCO₂H/Et₃N, *v/v*=1:3), 0.5 mL of H₂O and 0.1 mL of acetophenone (120.0 mg, 1.0 mmol), slowly heated to 50°C and stirred for 6 h (catalyst **3a**₃ was well-dispered during the reaction process). The reaction mixture was centrifugated, the catalyst **3a**₃ was recovered in quatitative yield. The conversion and chemoselectivity of acetophenone, and enantioselectivity of (R) or (S)-1-phenylethanol in the upper organic phase was directly determined on an Agilent 6820 gas chromatograph (USA) using a Chiral Cyclodex-B capillary column (30 m× 0.25 nm×0.25 um, Supelco). Temperature program: 100 °C, 5 min, 5 °C·min⁻¹;140 °C,15 min. The retention times of (R) or (S)-1-phenylethanol were t_R=8.95 min and t_S=9.26 min respectively. The other derivatives were shown as follows:

5. Reuse of copolymer-supported Ru catalyst

Catalyst $3a_3$ could be easily and quantitatively recycled by centrifugal separation, dried in reduced pressure and reused. The conversion and enantioselectivity of each reaction (5 runs) were shown in the following Table 3.

Run	Cat.	S/C	Solvent	Conv.(%) ^{<i>b</i>}	Yield $(\%)^c$	(%ee) ^d
1	3a ₃ (3a)	660	H_2O	100	98	97.2 (R)
2			H_2O	97	95	96.8 (R)
3			H_2O	98	96	97.0 (R)
4			H_2O	95	92	96.5 (R)
5			H_2O	90	86	96.6 (R)

Table 3. The conversion and enantioselectivity of in each reused reaction^a

^a Reaction conditions: (1.5 wt% Ru, 9 mg, 1.3×10⁻³ mmol), acetophenone (0.1 mL, 0.86 mmol), HCO₂H/Et₃N (0.5 mL, v/v=1:3), 50 °C,

6 h. ^b Monitored by GC. ^c Isolated yield. ^d Determined by chrial GC, Chiral Cyclodex-B (30 m× 0.25 nm×0.25 μm, Supelco). ^d v/v=1:1.