1	Supplementary Material
2	Calculation of NMR chemical shifts
3	
4	Chemical shieldings were computed for sulfathiazole (ST), sulfapyridine (SP), sulfamerazine
5	(SMZ), sulfadimethoxine (SDM) and sulfadoxine (SDX) in monomer and dimer forms; according
6	to the results discussed in the text, ST was considered in its imidic tautomeric form (with the
7	heterocycle N atom protonated), while all the other drugs were considered in the amidic structure
8	(characterized by the SO ₂ -NH moiety).
9	All the structures were optimized at the B3LYP/6-31G(d,p) level; NMR parameters were computed
10	with the GIAO method using larger basis sets, namely 6-311+G(d,p) (hereafter BS1) and aug-cc-
11	PVTZ (BS2), to verify the stability of the computed values; no environmental effects were included
12	in the calculations. The calculations on dimers with the largest basis set raised convergency
13	problems due to the huge computational weight, so that only BS1 results are reported for dimers:
14	then in the text we shall refer to more accurate BS2 values for momoner drugs, and approximate the
15	monomer-dimer differences at the BS1 level.
16	Conventional chemical shifts (Ω , ppm) were obtained by subtracting the chemical shieldings (\bullet ,
17	ppm) of the various nuclei in sulfadrugs from the • values computed at the same level for
18	tetramethylsilane (TMS) for 1 H and 13 C, and ammonia for 15 N.
19	The isotropic chemical shifts for ¹ H, ¹³ C and ¹⁵ N are reported in tables S1, S2 and S3, respectively:
20	the atom numbering is referred to figures S1 to S5. For ¹⁵ N only the atoms directly bound to
21	hydrogen are reported since they are detected by the experiments.
22	

1 Table S1. Computed ¹H isotropic chemical shifts (referred to TMS, $\bullet = 31.9$ ppm with BS1, 31.6

	S	Т			S	Р		SMZ			
	monomer		dimer	monomer		dimer		monomer		dimer	
	BS1	BS2	BS1		BS1	BS2	BS1		BS1	BS2	BS1
7H	6.6	6.5	6.9	7H	6.8	6.7	7.0	7H	6.6	6.5	6.4
8H	7.4	7.8	7.1	8H	7.4	8.2	8.0	8H	8.4	8.5	8.5
9H	8.2	8.1	7.0	9H	7.5	7.9	7.2	9H	7.8	8.1	7.4
10H	6.9	6.9	6.1	10H	6.4	6.6	5.8	10H	6.9	6.9	6.3
12H	3.2	3.7	3.8	12H	3.4	3.7	3.8	12H	3.8	3.6	3.5
13H	3.7	3.6	3.8	13H	3.4	3.6	3.8	13H	3.4	3.7	3.1
21H	6.4	6.6	6.8	18H ^(a)	6.2	6.8	12.7	18H ^(a)	7.2	7.2	10.7
22H	6.0	6.1	6.0	22H	7.9	8.1	7.4	22H	8.7	8.5	9.7
25H ^(a)	10.4	11.3	14.2	24H	7.5	7.8	8.0	24H	6.6	6.7	6.8
				26H	6.9	7.0	7.5	28H	1.8	2.2	1.7
				28H	8.3	8.4	9.4	29H	2.5	2.4	3.5
								30H	2.5	2.5	2.1

2 ppm with BS2). Refer to figures S1-S5 for the atom numbering.

- 3 (a) this atom involved in H-bonding in dimers.
- 4
- 5 <u>Table S1 (continued).</u>

	SD	0M		SDX						
	mone	omer	Dimer		omer	dimer				
	BS1	BS2	BS1		BS1	BS2	BS1			
7H	6.8	6.9	6.5	7H	6.4	6.7	6.5			
8H	7.9	8.1	8.0	8H	7.8	8.4	7.9			
9H	7.5	7.9	8.7	9H	7.8	8.1	7.7			
10H	6.6	6.7	6.6	10H	6.6	6.7	6.4			
12H	3.4	3.8	3.3	12H	3.7	3.7	3.9			
13H	3.4 3.6		3.5	13H	3.6	3.7	3.6			
18H ^(a)	6.4	6.6	9.8	18H ^(a)	6.2	7.1	12.0			

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

24H	6.9	6.9	7.2	27H	3.8	3.9	3.7
29H	3.7	3.8	3.7	28H	4.0	4.0	4.2
30H	3.9	3.9	3.9	29H	4.0	4.0	4.2
31H	3.9	3.9	4.0	30H	8.2	8.2	9.5
33H	3.8	3.9	3.8	33H	3.5	3.8	3.9
34H	3.7	3.7	4.4	34H	3.5	3.7	3.6
35H	3.8	3.9	3.8	35H	3.7	4.0	3.9

- 1
- 2

Table S2. Computed ¹³C isotropic chemical shifts (referred to TMS, $\bullet = 183.7$ ppm with BS1, 183.4 ppm with BS2). Refer to figures S1-S5 for the atom numbering.

	S	Т			S	Р		SMZ				
	mono	omer	dimer		monomer		dimer		monomer		dimer	
	BS1	BS2	BS1		BS1	BS2	BS1		BS1	BS1 BS2		
1C	116.3	129.8	121.5	1C	115.2	135.3	113.8	1C	115.3	118.8	116.6	
2C	134.7	160.2	136.6	2C	138.4	142.3	137.1	2C	141.2	152.7	145.0	
3C	142.2	155.4	145.6	3C	139.4	129.7	147.9	3C	140.9	150.2	152.8	
4C	135.8	127.5	132.6	4C	136.6	122.3	138.8	4C	136.1	138.4	136.2	
5C	117.6	90.4	118.4	5C	119.0	123.9	112.9	5C	117.3	93.6	116.1	
6C	161.1	148.3	159.8	6C	156.6	168.2	169.5	6C	160.6	153.1	157.6	
18C	175.9	177.7	178.0	19C	159.3	159.1	163.5	19C	167.6	165.9	169.3	
19C	125.7	127.5	129.8	20C	115.8	124.2	117.0	20C	166.7	158.6	167.4	
20C	114.0	112.6	118.0	21C	143.8	141.1	144.6	21C	117.7	117.5	118.5	
				23C	124.1	122.8	124.6	25C	177.6	172.0	178.5	
				27C	156.1	161.1	157.2	27C	25.9	26.0	25.1	

5

6 Table S2 (continued).

SD	РМ		SI	ЭХ	
mone	omer	dimer	mon	dimer	
BS1	BS2	BS1	BS1	BS2	BS1

Electronic Supplementary Material (ESI) for RSC Advances	
This journal is © The Royal Society of Chemistry 2013	

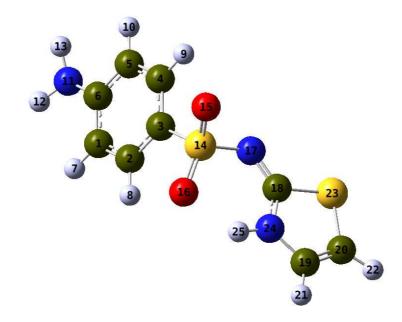
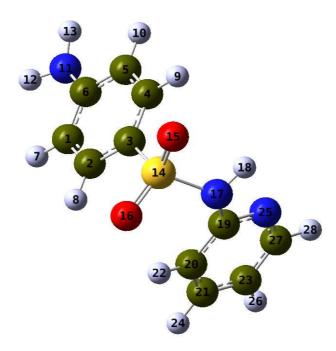
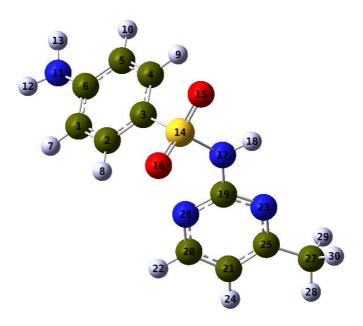
1	I				1 1	I	
1C	115.3	132.4	114.6	1C	116.8	117.1	116.4
2C	136.4	137.5	133.4	2C	139.7	147.4	142.3
3C	141.9	126.7	145.7	3C	137.1	147.8	146.3
4C	135.5	122.0	137.8	4C	136.7	143.4	136.5
5C	118.2	124.3	119.2	5C	119.1	112.2	117.5
6C	157.1	169.3	156.5	6C	156.7	152.0	160.0
19C	167.5	157.3	171.6	19C	160.1	152.9	161.8
20C	179.6	172.0	180.6	20C	173.7	169.4	172.7
22C	172.1	176.9	172.4	22C	159.5	158.9	161.5
23C	88.2	98.6	92.4	23C	135.1	132.3	134.4
28C	55.9	56.1	54.4	26C	56.1	59.6	54.1
32C	55.7	57.2	55.7	32C	61.6	61.0	61.8

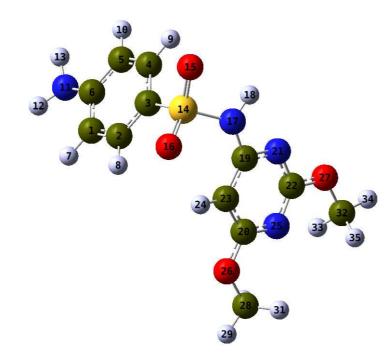
Table S3. Computed ¹⁵N isotropic chemical shifts (referred to NH₃, \bullet = 258.7 ppm with BS1, 259.8 ppm with BS2).

	ST		SP			SMZ			SDM			SDX			
	monomer		dimer	monomer dimer		monomer dime		dimer	monomer		dimer	monomer		dimer	
	BS1	BS2	BS1	BS1	BS2	BS1	BS1	BS2	BS1	BS1	BS2	BS1	BS1	BS2	BS1
NH_2	85.8	75.1	86.8	71.5	77.5	87.6	83.4	76.9	80.6	73.6	79.5	72.4	71.0	73.8	82.3
NH ^(a)	162.5	163.4	184.0	178.6	178.6	174.7	179.8	175.6	185.7	180.0	176.8	179.6	186.1	181.1	185.8

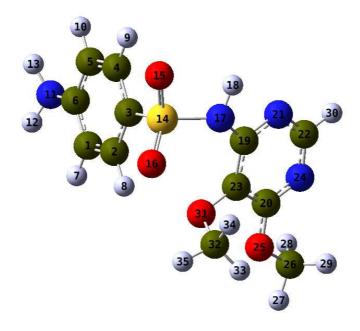
5 (a) heterocycle N atom in ST (in imidic tautomeric form); amidic SO₂-NH atom in all the other
6 drugs.

Figure S2. Sulfathiazole atom numbering.


Figure S3. Sulfapyridine atom numbering.

1 Figure S4. Sulfamerazine atom numbering.



- 2
- 3
- 4 Figure S5. Sulfadimethoxine atom numbering.

- 5 6
- U
- 7
- 8

1 Figure S6. Sulfadoxine atom numbering.

