Supporting Information

Unexpectedly Large Water-proton Relaxivity of TEMPO Incorporated into Micelle-Oligonucleotide

Emi Tanimoto ${ }^{\text {a) }}$, Satoru Karasawa ${ }^{\text {a) }}$, Shoji Ueki ${ }^{\text {b) }}$, Nobuhiro Nitta ${ }^{\text {c }}$, , chio Aoki ${ }^{\text {c) }}$, and Noboru Koga a)*

a) Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
b) Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1

Shido, Sanuki, Kagawa 769-2101, Japan
c) Molecular Imaging Center, National Institute of Radiologic Sciences (NIRS), 491 Anagawa, Inage, Chiba 263-8555, Japan

Contents

Figure S1. Sample alignment in 7.0 and 1.0 T-MRI measurements
2. Figure S2. CD spectra of lipid-polyT(TDU)DS, lipid-polyT ${ }_{\text {nat }} \mathrm{DS}$, and polyT ${ }_{\text {nat }} \mathrm{DS} .--\mathrm{S} 10$
3. Figure S3. Emission spectra of pyrene in the presence of ODN and I_{1} / I_{3} vs. [ODN] plots. -S11

Figure S5'. AFM and MFM images for lipid-polyT(TDU)DSs.
6. Figure S6. ESR spectra of lipid-polyT(TDU)SSs and lipid-polyT(TDU)DSs. $--\quad-\quad-\quad$ S15

Figure S6' ESR spectra of polyT(TDU)SSs and polyT(TDU)DSs.
7. Figure S7. ESR spectra with simulation for lipid-polyT(TDU)DSs, and polyT(TDU)s. -- -S17
8. Figure S8. T_{1}-weighted images in vitro. -_18

1.

Experimental

General Methods. Infrared spectra were recorded on a JASCO 420 FT-IR spectrometer. UV-Vis spectra were recorded on a JASCO V570 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL 270 Fourier transform spectrometer using CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$ as solvent and referenced to TMS. MALDI TOF mass (MALDI TOF MS) and ESI mass spectra (ESI MS) were recorded on a Bruker Daltonics MALDI-TOF Reflex-TOF spectrometer and Bruker Daltonics microTOF spectrometer. Melting points were obtained with a MEL-TEMP heating block and are uncorrected. DLS measurements were performed on a Zetasizer Nano ZS (Malvern Instruments Ltd.) AFM and MFM images were collected with DimensionIcon (Veeco Instruments Ltd.). Elemental analyses were performed in the Analytical Center of the Faculty of Science in Kyushu University.
Determination of Concentrations Concentrations of the samples for all oligonucleotides carrying aminoxy were estimated from the calibration curve, which was obtained by the concentration dependence of double integration of ESR signals of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-OH) in the range of $1.0-0.1 \mathrm{mM}$. Furthermore, the concentration of the samples was also confirmed by the measurement of the absorption at 260 nm . The absorption coefficiencys, ε, of 9300 and 15300 at 260 nm for thymine and adenine, respectively, were used for the calculation.

Determination of Thermal Denaturation Temperatures (Tm) UV-monitored denaturation experiments were conducted at 260 nm using a SHIMADZU UV-2450 spectrometer on the modified and unmodified oligonucleotides under the following conditions: phosphate buffer ($10 \mathrm{mM}, \mathrm{pH}=7.0$), $\mathrm{NaCl}(100 \mathrm{mM}), \mathrm{MgCl}_{2}(50 \mathrm{mM})$. The absorption at 260 nm was followed by heating at a rate of $0.5^{\circ} \mathrm{C} / \mathrm{min}$.

Circular Dichroism Measurements The CD spectra were recorded on a JASCO J-720W78 CD spectrometer at $25^{\circ} \mathrm{C}$. Solution samples $(3.3 \mathrm{mM})$ of a double strand in phosphate buffer $(10 \mathrm{mM}$, $\mathrm{pH}=7.0$) containing $\mathrm{NaCl}(100 \mathrm{mM})$ and $\mathrm{MgCl}_{2}(50 \mathrm{mM})$ were used.
ESR Spectra ESR spectra were recorded on a Bruker Biospin ESR300 EPR X-band (9.4 GHz) spectrometer equipped with a microwave frequency counter. Sample solutions in phosphate buffer were placed in capillary tubes and were measured at $25^{\circ} \mathrm{C}$.
Relaxivity Measurements The spin-lattice and spin-spin relaxation rates (T_{1} and T_{2}, respectively) were obtained on a JEOL JNM-MU25A spectrometer ($25 \mathrm{MHz}, 0.59 \mathrm{~T}$). The sample solutions (ca. $0.1-0.7 \mathrm{mM}$) in phosphate buffer were placed in 10 mm o.d. glass tubes and were measured at $25^{\circ} \mathrm{C}$.
The values of relaxivity, r_{1} and r_{2}, were calculated with equations (1) and (2).

$$
\begin{align*}
& 1 / T_{l}=1 / T_{0}+r_{1} C \tag{1}\\
& 1 / T_{2}=1 / T_{0}+r_{2} C \tag{2}
\end{align*}
$$

, where T_{0} and C are the relaxation rate in the absence of the paramagnetic species and the concentration of the paramagnetic species, respectively.
T_{1}-weighted Images in vitro
Esr spectra of the solutions of lipid-polyTinSS and -DS in buffer were measured and their concentrations were determined from the calibration curve of ESR signal intensity. The solutions of contrast agents were diluted with buffer to 1 mM solution. By using 1 mM solution, the solutions of the given concentration were obtained. The buffer solutions of contrast agents ($150 \mu \mathrm{l}$) were put into a polymerization chain reaction (PCR) tube cluster plate (200 $\mu 1$, Simport Plastics Ltd., Beloeil, Canada), as shown in Figure S1. The PCR tube cluster plate was set in the center of the volume coil. For the comparison of the relaxivities at 7.0 and 1.0 T , the same samples in the PCR tube cluster plate were used for 7.0 and 1.0 T-MRI measurements. Sample temperature was maintained at $22.0 \pm 0.5^{\circ} \mathrm{C}$ throughout all experiments.

Magnevist lipid-polyT ${ }_{\text {in }}$ DS TEMPO-OH

Figure S1. Samples of given concentrations aligned in the PCR tube cluster plate for the relaxivity measurements of Magnevist, lipid-polyTinDS, and TEMPO-OH for

The MRI acquisitions of contrast agents were performed on a 7.0 T-MRI scanner (Magnet: Kobelco and JASTEC, Kobe, Japan; Console: BrukerBiospin, Ettlingen, Germany) with a volume coil (35 mm inner-diameter, transmission and reception, Rapid Biomedical, Rimper, Germany) or a 1.0 T-MRI scanner (M-2, Aspect Imaging, Israel) with a volume coil (mouse body coil, transmission and reception, Aspect Imaging).
For 7.0 T-MRI scanner, horizontal single-slice T_{1}-weighted MR images were acquired with the following parameters: spin echo, $T R / T E=250 / 9.6 \mathrm{~ms}$, slice thickness $=2.0 \mathrm{~mm}$, matrix $=256 \times 256$,
field of view $(F O V)=38.4 \times 38.4 \mathrm{~mm}^{2}$, number of averages $(N A)=1$, number of slices $=1$. The total acquisition time for T_{1}-weighted MRI was 1.1 minute. For longitudinal relaxation time (T_{1}) and longitudinal relaxivity (r_{1}) calculations, horizontal single-slice inversion-recovery MRI was obtained using RARE (rapid acquisition with relaxation enhancement) acquisition with the following parameters: $\mathrm{TR}=10,000 \mathrm{~ms}, \mathrm{TE}=10 \mathrm{~ms}$, inversion time $=52,100,200,400,800,1600,3200,6400$ ms , matrix size $=128 \times 128, \mathrm{FOV}=38.4 \times 38.4 \mathrm{~mm}^{2}$, slice thickness $=2.0 \mathrm{~mm}$, RARE factor $=4$, and $\mathrm{NA}=1$. The total acquisition time for inversion-recovery MRI was 42.7 minutes.
For 1.0 T-MRI scanner, horizontal single-slice T_{1}-weighted MR images were acquired with the following parameters: spin echo, $\mathrm{TR} / \mathrm{TE}=350 / 10 \mathrm{~ms}$, slice thickness $=2.0 \mathrm{~mm}$, matrix $=128 \times 128$, FOV $=42.0 \times 42.0 \mathrm{~mm}^{2}, \mathrm{NA}=1$, number of slices $=1$. The total acquisition time for T_{1}-weighted MRI at 1.0 T-MRI was 0.8 minutes. For T_{1} and r_{1} calculations, horizontal single-slice inversion-recovery MRI was obtained using conventional spin-echo acquisition with the following parameters: $\mathrm{TR}=$ $10,000 \mathrm{~ms}, \mathrm{TE}=10 \mathrm{~ms}$, inversion time $=13.2,20,50,75,100,200,400,600,800,1000,1200,1600$, $3200,6400 \mathrm{~ms}$, matrix size $=128 \times 128, \mathrm{FOV}=42.0 \times 42.0 \mathrm{~mm}^{2}$, slice thickness $=2.0 \mathrm{~mm}$, RARE factor $=4$, and NA $=1$. The total acquisition time for inversion-recovery MRI was 5 hours.

Statistics and Data Analysis $\quad T_{1}$ maps were calculated with non-linear least squares fitting. ParaVision (BrukerBiospin), MRVision (MRVision Co., USA) and Osirix (Antoine Rosset, USA) were used to display and perform analysis on all MR images.

Materials Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, dimethyformamide (DMF), dimethylsulfoxide (DMSO) and pyridine were distilled under high-purity N_{2} after drying with calcium hydride. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-OH) and 5-Iodo-2'-deoxyuridine were purchased and used without purification. Abbreviations used in this work: EDC $=1$-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, $\mathrm{TBDMSCl}=t$-Butyldimethylsilyl chloride, $\mathrm{TBAF}=$ Tetrabutylammonium fluoride, $\mathrm{DMTrCl}=4,4^{\prime}$ - - imethoxytrityl chloride, $\mathrm{DMAP}=$ 4-N,N-Dimethylaminopyridine.

a) 5-lode-2'-deoxyuridine, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{NaOH}, \mathrm{MeOH}, \mathrm{THF}$, water,b) TBDMS-Cl, Imidazole, DMF,
c) 1) L-ascorbic acid, $\left.\mathrm{CH}_{3} \mathrm{OH}, 2\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$, DMAP, Imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, d) TBAF, THF, e) 1) DMTrCI, DMAP, Py.
f) N, N-diisopropylethylamine, 2-Cyanoethyl- $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetraisopropylphosphordiamidite, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Scheme S1. Preparation routes for TDUP, GP, and SP

2,2,6,6-tetramethyl-4-(4,4,5,5-tetramethyl-1,2,3-dioxaborolan-2yl)-3,6-dihydropyridin-1(2H)yloxyl (1)This was prepared using a procedure modified from the literature. ${ }^{1)}{ }^{1} \mathrm{H}$ NMR (270 MHz , $\mathrm{CDCl}_{3}+$ phenylhydrazine) $\delta 6.26(s, 1 \mathrm{H}), 2.47(s, 2 \mathrm{H}), 1.46(s, 6 \mathrm{H}), 1.37(s, 6 \mathrm{H}), 1.28(s, 12 \mathrm{H})$; ESI MS: m / z Calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{BNO}_{3} \mathrm{Na}\right]$ 303.2, Found $303.2[\mathrm{M}+\mathrm{Na}]^{+}$; $\mathrm{ESR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), g=2.0084, a_{N}=$ 11.5 gauss.

5-(1-Oxy-2,2,6,6-tetramethylpiperidinyl)-2'-deoxyuridine (TDU) The solution of 5-iodo-2'-deoxyuridine ($1.6 \mathrm{~g}, 4.6 \mathrm{mmol}$) dissolved in $1: 1$ mixture (286 ml) of THF and $\mathrm{H}_{2} \mathrm{O}$ was mixed with the $\mathrm{MeOH}(124 \mathrm{ml})$ solution of $\mathbf{1}(2.1 \mathrm{~g}, \quad 7.49 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium $(0), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4},(323 \mathrm{mg}, 3.0 \mathrm{mmol} \%)$, and sodium hydroxide $(2.8 \mathrm{~g}, 138 \mathrm{mmol})$. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 5 hr . under nitrogen atmosphere. After neutralization with ammonium chloride, the reaction mixture was extracted with EtOAc. The organic layers were combined, washed with brine, dried over MgSO_{4}, and concentrated. The crude mixture was chromatographed on silica gel with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ as the eluent to give TDU as a pale yellow solid in 67% yield ($1.2 \mathrm{~g}, 3.2 \mathrm{mmol}$). Mp (decomp.), $205^{\circ} \mathrm{C}$; IR (KBr) $3493\left(\nu_{\mathrm{OH}}\right), 1718\left(v_{\mathrm{O}=\mathrm{C}}\right)$
$\mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}+$ phenyhydradine) $\delta 7.96(s, 1 \mathrm{H}), 6.23(t, J=0.2$ and $0.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.16(s, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 1.25(s, 6 \mathrm{H}), 1.18(s$, $6 \mathrm{H})$; ESI MS: m / z Calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}\right] 403.1719$, found $403.1745[\mathrm{M}+\mathrm{Na}]^{+}$; $\operatorname{ESR}\left(\mathrm{H}_{2} \mathrm{O}\right), g=$ 2.0087, $a_{N}=14.2$ gauss.; Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, $56.83 ; \mathrm{H}, 6.89 ; \mathrm{N}, 11.05 \%$, found: C, 56.55 ; H, 7.02; N, 10.87\%.

5-(1-Oxy-2,2,6,6-tetramethylpiperidinyl)-2'-deoxy-3',5'-bis-O-tert-butyldimethylsililuridine (2)

To this solution of TDU ($2.1 \mathrm{~g}, 5.5 \mathrm{mmol}$) dissolved in DMF (27 ml) was added TBDMSCl $(2.1 \mathrm{~g}$, 14.0 mmol) and imidazole ($1.2 \mathrm{~g}, 17.6 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for $2 \mathrm{hr} . \mathrm{H}_{2} \mathrm{O}$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, washed with brine, dried over MgSO_{4}, and concentrated in a vacuum. The crude residue was chromatographed on silica gel with n-hexane/ EtOAc as the eluent to give protected, TDU, 2, as a pale yellow solid in 99% yield ($3.3 \mathrm{~g}, 5.4 \mathrm{mmol}$); Mp(decomp.) $167-168^{\circ} \mathrm{C}$; IR (KBr) $1707\left(v_{\mathrm{O}=\mathrm{C}}\right) \mathrm{cm}^{-1}$; ESI MS: m / z Calcd for [$\left.\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}\right] 631.345$, found $631.356[\mathrm{M}+\mathrm{Na}]^{+}$; Anal Calcd for $\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{2}$: C, 59.17; H , 8.94; N, 6.90\%, found: C, $59.01 ; \mathrm{H}, 8.99$; N, 6.93\%.

5-(1-Acetyloxy-2,2,6,6-tetramethylpiperidinyl)-2'-deoxy-3',5’-bis-O-tert-butyldimethylsililurid

ine (3) L-Ascorbic acid ($1.3 \mathrm{~g}, 7.2 \mathrm{mmol}$) was added to the solution of the protected uridine derivative $2(2.7 \mathrm{~g}, 4.5 \mathrm{mmol})$ dissolved in $\mathrm{MeOH}(15 \mathrm{ml})$. The solution was stirred for 5 min . at room temperature. $\mathrm{H}_{2} \mathrm{O}$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layers were combined, washed with brine, dried over MgSO_{4}, and concentrated to dryness. The obtained white powder was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(52 \mathrm{ml})$, and imidazole ($1.6 \mathrm{~g}, 23.5 \mathrm{mmol}$) and anhydrous acetic acid $(1.5 \mathrm{ml})$ were added. The reaction mixture was stirred at room temperature overnight. $\mathrm{H}_{2} \mathrm{O}$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layers were combined, washed with brine, dried over MgSO_{4}, and concentrated to dryness. The crude residue was chromatographed on silica gel with n-hexane/ EtOAc as the eluent to give protected, TDU, 3, as a white solid in 75% yield ($2.2 \mathrm{~g}, 3.4 \mathrm{mmol}$); Mp $159.1-160^{\circ} \mathrm{C}$; IR (KBr) $1756\left(v_{\mathrm{O}=\mathrm{C}}\right), 1714\left(v_{\mathrm{O}=\mathrm{C}}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $270 \mathrm{MHz}): \delta 8.09(s, 1 \mathrm{H}), 6.22(t, J=8.1$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(s, 1 \mathrm{H}), 4.40(m, 1 \mathrm{H}), 3.96(m, 1 \mathrm{H})$, $3.35-3.28(m, 2 H), 2.35-2.28(m, 2 H), 2.14(b r, 5 H), 1.33-1.19(m, 12 H), 0.90(s, 18 \mathrm{H}), 0.09(s, 6 \mathrm{H})$, $0.075(s, 6 H)$; HRESI MS: m / z Calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}\right] 674.3627$, found $674.3629[\mathrm{M}+\mathrm{Na}]^{+}$.
5-(1-Acetyloxy-2,2,6,6-tetramethylpiperidinyl)-2'-deoxyuridine (4) TBAF ($4.7 \mathrm{ml}, 16 \mathrm{mmol}$) was added to a solution of $3(2.1 \mathrm{~g}, 3.2 \mathrm{mmol})$ in THF (25 ml). The solution was stirred at room temperature overnight and then solvent was evaporated to the dryness. The crude residue was chromatographed on silica gel with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ as the eluent to give $\mathbf{4}$ as a white solid in 97% yield ($1.3 \mathrm{~g}, 3.1 \mathrm{mmol}$); Mp $104-106^{\circ} \mathrm{C}$; IR (KBr) $3443\left(v_{\mathrm{OH}}\right), 1758\left(v_{\mathrm{O}=\mathrm{C}}\right), 1697\left(v_{\mathrm{O}=\mathrm{C}}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right): \delta 7.69(s, 1 \mathrm{H}), 6.24(t, J=6.7$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(s, 1 \mathrm{H}), 4.61(m, 1 \mathrm{H})$,
$4.05-4.04(m, 1 \mathrm{H}), 3.98-3.83(m, 2 \mathrm{H}), 2.39-2.32(m, 2 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.18(m$, $12 \mathrm{H})$; HRESI MS: m / z Calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na}\right] 446.1898$, found $446.1893[\mathrm{M}+\mathrm{Na}]^{+}$. 5-(1-Acetyloxy-2,2,6,6-tetramethylpiperidinyl)-2'-deoxy-5'-O-(4,4'-diethoxytrityl)uridine (5) 4, 4'-dimethoxytrityl chloride ($1.5 \mathrm{~g}, 4.4 \mathrm{mmol}$) and 4-dimethylaminopyridine ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) were added to the solution of $\mathbf{4}(1.2 \mathrm{~g}, 2.9 \mathrm{mmol})$ dissolved in anhydrous pyridine (7 ml). The solution was stirred for 1.5 hr . at room temperature. After quenching with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic layers were combined, washed with brine, dried over MgSO_{4}, and concentrated to dryness. Compound $\mathbf{5}$ was obtained as white solids in 56% yield ($1.20 \mathrm{~g}, 0.28$ $\mathrm{mmol})$; Mp 118-120 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3447($\left.v_{\mathrm{OH}}\right), 1762\left(v_{\mathrm{O}=\mathrm{C}}\right), 1689\left(v_{\mathrm{O}=\mathrm{C})} \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}\right.$ NMR (270 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.97(s, 1 \mathrm{H}), 7.29-7.16(m, 9 \mathrm{H}), 6.85-6.82(m, 4 \mathrm{H}), 6.24(t, 1 \mathrm{H}), 6.10(s, 1 \mathrm{H}), 4.61(m, 1 \mathrm{H})$, $4.05-3.87(m, 3 H), 3.80(s, 6 H), 2.41-2.33(m, 2 H), 2.18(s, 2 H), 2.13(s, 3 H), 1.34-1.19(m, 12 H) ;$ HRESI MS: m / z Calcd for $\left[\mathrm{C}_{41} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Na}\right] 748.3205$, found $748.3235[\mathrm{M}+\mathrm{Na}]^{+}$.
5-(1-Acetyloxy-2,2,6,6-tetramethylpiperidinyl)-2'-deoxy-3'-O-(2-cyanoethyl)-N,N-diisopropylp hosphramidite- $\mathbf{5}^{\prime}$ - \boldsymbol{O}-(4,4'-diethoxytrityl)uridine (TDUP) N, N-diisopropylethylamine ($0.7 \mathrm{ml}, 4.2$ $\mathrm{mmol})$ was added to the solution of $5(1.1 \mathrm{~g}, 1.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{ml})$. The solution was stirred for 10 min in an ice bath and added to 2-cyanoethyl- N, N, N, N '-tetraisopropylphosphordiamidide ($0.48 \mathrm{ml}, 1.5 \mathrm{mmol}$). The solution was stirred for 1.5 hr . at room temperature. After quenching with aqueous $5 \% \mathrm{NaHCO}_{3}(10 \mathrm{ml})$ the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three time, dried over MgSO_{4}, and concentrated to dryness. The obtained pale yellow oil was chromatographed on silica gel with n-hexane/ $\operatorname{EtOAc}\left(5 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ as the eluent to give TDUP as a white solid in 69% yield ($0.95 \mathrm{~g}, 1.0 \mathrm{mmol}$).; Mp $93-95^{\circ} \mathrm{C}$; IR (KBr) $1763\left(v_{\mathrm{O}=\mathrm{C}}\right), 1685\left(v_{\mathrm{O}=\mathrm{C}}\right) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) : $\delta 8.14(s, 1 \mathrm{H}), 7.44-7.28(m, 9 \mathrm{H}), 6.84-6.81(m, 4 \mathrm{H}), 6.22(m, 1 \mathrm{H})$, $5.94(s, 1 H), 4.43-4.39(m, 1 H), 4.21-4.02(m, 1 H), 3.79(s, 6 H), 3.64-3.40(m, 6 H), 2.78-2.62(m$, $4 \mathrm{H}), 2.05(s, 5 \mathrm{H}), 1.33-0.89(m, 24 \mathrm{H})$; HRESI MS: m / z Calcd for $\left[\mathrm{C}_{50} \mathrm{H}_{64} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{PNa}\right]$ 948.4283, found $948.4263[\mathrm{M}+\mathrm{Na}]^{+}$.

1,3-O-(4,4'-Dimethoxytrityl)propane-2-O-(2-cyanoethyl)-N,N-diisopropylphosphoramidite

(GP) This was prepared in a similar procedure to the literature. ${ }^{2}{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.38-7.17$ ($\mathrm{m}, 18 \mathrm{H}$), 6.85-6.74 ($\mathrm{m}, 8 \mathrm{H}$), 3.77 ($\mathrm{s}, 12 \mathrm{H}$), 3.44-3.09 ($\mathrm{m}, 4 \mathrm{H}$), 3.23-3.09 ($\mathrm{m}, 4 \mathrm{H}$), 2.40 $(m, 3 H), 1.29-1.01(m, 12 H)$; HRESI MS: m / z Calcd for $\left[\mathrm{C}_{54} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PNa}\right]$ 919.4061, found $919.4058[\mathrm{M}+\mathrm{Na}]^{+}$.
\boldsymbol{O}-cyanoethyl- \boldsymbol{O}-stearyl- $\boldsymbol{N}, \boldsymbol{N}$-diisopropylphosphoramidite (SP) This was prepared in a similar procedure to the literature. ${ }^{3}{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.88-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.55(\mathrm{~m}, 2 \mathrm{H})$, $2.64(t, J=6.7,6.1,2 \mathrm{H}), 1.57(b r, 34 \mathrm{H}), 1.20-1.17(m, 12 \mathrm{H}), 0.88(t, J=6.7,3 \mathrm{H})$; HRESI MS: m / z Calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PNa}\right.$ 493.3893, found $493.3890[\mathrm{M}+\mathrm{Na}]^{+}$.

1) T. Kálai, J. Jekő, Z. Berente, K. Hideg, Synthesis. 2006, 3, 429-446.
2) G. Oliviero, N. Borbone, J. Amato, S. D’Errico, A. Galeone, G. Piccialli, M. Varra, L. Mayol, Biopolymer. 2009, 91, 466-477.
3) H. Liu, B. Kwong, D. J. Irvine, Angew. Chem., Int. Ed. 2011, 50, 7052-7055.

Oligonucleotide synthesis and characterization
Amidite derivatives, TDUP, GP, and SP were applied into solid-phase oligonucleotide synthesis protocols with an automated DNA synthesizer (Model NTS-H8:Gine World Ltd.). All oligodeoxynucleotides (ODNs) were synthesized on $1.0 \mu \mathrm{~mol}$ scale using β-cyanoethyl phosphoramidite chemistry in DMTr-ON mode. Stepwise coupling yields for modified nucleosides were all greater than 95% as determined by trityl monitoring. The synthesized ODNs were cleaved from the solid support by treatment with 28% aqueous ammonia (1 ml) for 12 hrs . at $55^{\circ} \mathrm{C}$. Complete deprotection and auto-oxidation of TEMPO moiety were accomplished by treatment with aqueous NaOH (ca. 0.5 M) for 24 h at room temperature. The solution was neutralized with cation exchange resin (H^{+}form) and filtered through a $0.45 \mu \mathrm{~m}$ filter disk. Final purification of oligomers was achieved by HPLC (Nacalai tesque ODS column, COSMOCIL 5C18-ARII, or 5C4-AR300, $20 \times 250 \mathrm{~mm}$). Oligomers were purified under the following conditions: $5-25 \% \mathrm{MeCN}$ in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH}=7.0$) over 60 min ; flow rate 6 $\mathrm{ml} / \mathrm{min}$; detecting at $\lambda=260 \mathrm{~nm}$ wavelength). Modified ODNs in the study were characterized by matrix-assisted laser-desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (Table S1) by using $2: 1$ mixture of EtOH solution of 2,4,6-trihydoroxyacetophenone and water solution of ammonium citrate as matrixes.

Table S1. Data of MALDI-TOF mass spectroscopy for single strand ODNs.

	lipid-polyT $_{\mathrm{x}}$					polyT $_{\mathrm{x}}$			
n	out	mid	in	nat	out	mid	in	nat	
Calcd.	5458	5458	5458	5320	4639	4639	4639	-	
M. W.									
Found	5457	5457	5458	5318	4636	4638	4635	-	
M. W.									

The formation of the double strands and their characterization The solution ($<1 \mathrm{mM}$) of TEMPO-ODNs and a complimentary strand in 10 mM phosphate buffer were mixed in a ratio of 1.0 :
1.3 , warmed at $90{ }^{\circ} \mathrm{C}$ for 1 min . and then gradually cooled to room temperature. To evaluate the stability of double strands, the melting curves were obtained. The T_{m} values for the double strands of poly $\mathrm{T}_{\text {out }}$, poly $_{\text {mid }}$, polyT $_{\text {in }}$, and poly $\mathrm{T}_{\text {nat }}$ were $48.5,46.3,52.0$, and $50.1^{\circ} \mathrm{C}$, respectively. The secondary structures of the double strands by circular dichroism (CD) spectra were confirmed to be B form.
2.

Figure S2. CD spectra of lipid-polyT(TDU)DSs, lipid-polyT(nat)DS, and polyT(nat)DS.

lipid-polyT(nat)ss

lipid-polyT(TDU)outss

lipid-polyT(TDU)midSS

lipid-polyT(TDU)inss

Figure S3. Emission spectra of pyrene in the presence of ODN (left) and I_{1} / I_{3} vs. [ODN] plots (right).
4.

Figure S 4 . DLS of lipid-poly $\mathrm{T}_{\text {in }} \mathrm{SS}$ (top) and poly $\mathrm{T}_{\text {mid }} \mathrm{SS}$ (bottom).
5.

AF'M image
MFM image
lipid-polyT(nat)ss

lipid-polyT(TDU)outss

lipid-polyT(TDU)midss

lipid-polyT(TDI)inss

Figure S5. AFM (left) and MFM (right) images for lipid-polyT(TDU)SSs.

AFM image

lipid-polyT(TDU)outDS

lipid-polyT(TDU)midDS

MFM image

Figure S5'. AFM (left) and MFM (right) images for lipid-polyT(TDU)DSs.
6.

Field/ mT
lipid-polyT(TDU)midSS

Field/mT

lipid-polyT(TDIDinss

Field/ mT
lipid-polyT(TDU)outDS

Field/ mT
lipid-polyT(TDU)midDS

Field/ $/ \mathrm{mT}$

lipid-polyT(TDIDinDS

Field/mT

Figure S6. ESR spectra of lipid-polyT(TDU)SS (left) and lipid-polyT(TDU)DS (right).

Figure S6'. ESR spectra of polyT(TDU)SS (left) and polyT(TDU)DS (right).
7.

Figure S 7 . ESR spectra (open circle) and its simulation spectra (solid line) for polyT $\mathrm{o}_{\text {out }} \mathrm{DS}$ (a), polyT $\mathrm{m}_{\text {mid }} \mathrm{DS}$ (b), polyT $_{\text {in }} \mathrm{DS}$ (c), lipid-polyT $\mathrm{T}_{\text {out }} \mathrm{DS}$ (d), lipid-poly $\mathrm{T}_{\text {mid }} \mathrm{DS}$ (e), and lipid-polyT $\mathrm{in}_{\text {in }} \mathrm{DS}$ (f). Simulation were carried out in according to MOMD for (b) and ($\mathrm{d}-\mathrm{f}$), and Brownian diffusion model for (a) and (c), ${ }^{1)}$ The obtained τ_{R} values are listed in Table 1.

1) a) J. J. Inbaraj, T. B. Cardon, M. Laryukhin, S. M. Grosser, G. A. Lorigan, J. Am. Chem. Soc. 2006, 128, 9549-9554. b) D. E. Budil, S. Lee, S. Saxena, J. H. Freed, J. Magn. Reson. Ser. A. 1996, 120, 155-189.
8.

(a)

(b)

Figure $\mathrm{S} 8-1 . T_{1}$-weighted images ($300 \mathrm{MHz}, 7.0 \mathrm{~T}$) in vitro of (a) GdDTPA (left), lipid-polyT $\mathrm{in}_{\text {in }} \mathrm{DS}$ (middle), and TEMPO-OH (right) and (b) GdDTPA (left), lipid-polyT $\mathrm{in}_{\text {in }} \mathrm{SS}$ (middle), and TEMPO-OH (right). Concentrations were $1.0,0.5,0.1$, and 0.0 mM from the top to the down.
(a)

(b)

Figure S8-2. T_{1}-weighted images in vitro of lipid-poly $\mathrm{T}_{\text {mid }} \mathrm{DS}$ (left), lipid-poly $\mathrm{T}_{\text {out }} \mathrm{DS}$ (middle), and TEMPO-OH (right) in $42 \mathrm{MHz}, 1.0 \mathrm{~T}$ (a) and $300 \mathrm{MHz}, 7.0 \mathrm{~T}$ (b). Concentrations were $0.5,0.3,0.1$, and 0.0 mM from the top to the down.

Figure S8-3. T_{1}-weighted images in vitro of poly $\mathrm{T}_{\text {mid }} \mathrm{DS}$ (left), poly $\mathrm{T}_{\text {mid }} \mathrm{SS}$ (middle), and TEMPO-OH (right) in $42 \mathrm{MHz}, 1.0 \mathrm{~T}$ (a) and $300 \mathrm{MHz}, 7.0 \mathrm{~T}$ (b). Concentrations were $0.5,0.3,0.1$, and 0.0 mM from the top to the down.

