PEGylated Gold Nanoparticles: Polymer Quantification as a Function of

PEG lengths and Nanoparticle Dimensions

Kamil Rahme,* ^{*a,b,c*}, Richard G. Hobbs, ^{*a,b*} Lan Chen ^{*a,b,d*}, Michael A. Morris ^{*a,b*}, Caitriona O'Driscoll^{*e*} and Justin D. Holmes ^{*a,b*}

^aMaterials Chemistry and Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland.

^bCentre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland.

^cDepartment of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon

^dDepartment of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street Cambridge, CB2 3RA, UK.

^ePharmocodelivery group, School of Pharmacie, University College Cork, Cork, Ireland.

*To whom correspondence should be addressed: Fax:+961 9 225164; Tel:+961 9 218950

E-mail: kamil.rahme@ndu.edu.lb

[†]Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

SUPPORTING INFORMATION.

Figure S1. Statistical histograms from TEM images of different AuNPs sizes synthesized in this work analysed using Image J software.

Figure S2. Zeta Potential of approximately 15 nm AuNPs coated with mPEG-SH of different molecular weight.

Example for the estimation of the numbers of PEG/AuNPs

The volume of a gold atom is

$$V_{Au} = \frac{M_{Au}}{d.N_A} = 1.7.10^{-29} \text{ m}^3$$

Were d is the density of gold (19.3 x 10^3 Kg/m³), M_{Au} ~197 g/mol and N_A the Avogadro number. The number of gold atom per particle is considered to

$$N_{Au/Np} = \frac{V_{Np}}{V_{Au}}$$

For 15 nm spherical nanoparticle the volume is; $V_{Np} \sim 1.767 \times 10^{-24} \text{ m}^3$; so the number of gold atom per particle $N_{Au/Np} \sim 1.03 \times 10^5$ atomes/particle. So the estimated molecular weight of 15 nm AuNPs is M $_{AuNp} = 2.03 \times 10^7 \text{ g/mol}$. For example from figure S1 (a) 12 % of weight are considered to correspond to PEG attached to AuNPs and 81 % correspond to pure gold while the weight loss below 300 °C correspond to water (<100 °C) the left citrate and free PEG. So this correspond in 1 mg to $N_{AuNPs} =$ 2.403 x 10¹³ and N PEG ₁₀₀₀₀-SH = 6.692 x 10¹⁵ so from this experiment we estimate that 15 nm AuNPs contain 278 PEG _{10 000}-SH. The grafting density correspond to 278/176.71 ~ 1.573 PEG 10 000/nm² and finally the foot print of the PEG 10 000 correspond to 1/1.573 ~ 0.635 nm². (a)

Thermogravimetric analysis measurements:

Figure S3. (a) Weight loss in function of the temperature for the mPEG_{10 000}-SH and AuNPs-S-PEG₁₀ $_{000}$.(b) first derivative of the weight loss, shows clearly that PEG degrade at ~300°C while PEG grafted to AuNPs degrade at higher temperature. (c) first derivative of the weight loss for some samples used in this study.

Polymer conformation:

The Flory radius for the different PEG used in this study is calculated using the formula ($F=\alpha n^{3/5}$), these values were compared to the value of the effective distance between 2 polymer graft points D

For PEG 2 000	the value of F is $0.35 \times 45.45^{0.6} = 3.46$
For PEG 5 000	the value of F is $0.35 \times 122.73^{0.6} = 6.27$
For PEG 10 000	the value of F is $0.35 \times 245.45^{0.6} = 9.50$
For PEG 20 000	the value of F is $0.35 \times 443^{0.6} = 13.5$
For PEG 30 000	the value of F is $0.35 \times 670^{0.6} = 17.3$
For PEG 48 000	the value of F is $0.35 \times 1168.18^{0.6} = 24.24$

In order to estimate the value of D (effective distance between two grafting point), we simply estimate the surface area of empty space on the AuNPs between two grafted site and conclude the distance D. Since the PEG-SH is attached to the AuNPs through tiol-gold linkage, D can be simply obtained by calculating the square root of the NP surface area divided by the number of PEG ligands ($D = \sqrt{NP}$ surface area/number of polymer).

ie. for 15 nm AuNPs-PEG_{2 000}

The distance D between the 2 PEG chain is $D = \sqrt{707/695} = 1.00 < F = 3.46$ 'brush' conformation.

For AuNPs -PEG48 000

The distance D between the 2 PEG chain is $D = \sqrt{707/50} = 3.76 < F = 24.24$ so 'brush' conformation

For 60 nm AuNPs-PEG_{10 000}

The distance D between the 2 PEG chain is $D = \sqrt{11304/2572} = 2.1 < F = 9.50$ 'brush' conformation.