## Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Jean-Christophe M. Monbaliu,<sup>*a,b*</sup> Lucas K. Beagle,<sup>*a*</sup> Finn K. Hansen,<sup>*a,c*</sup> Christian V. Stevens,<sup>*b*</sup> Ciaran McArdle<sup>*d*</sup> and Alan R. Katritzky<sup>*a,e*</sup>

<sup>a</sup> Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA

<sup>b</sup> Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium

<sup>c</sup> Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

<sup>d</sup> Henkel Ireland Ltd., Tallaght Business Park, Whitestown Industrial Estate, Tallaght, Dublin 24, Ireland <sup>e</sup> Chemistry Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia

katritzky@chem.ufl.edu

### SUPPORTING INFORMATION

| 1. Generalities                                                                                | <b>S1</b>  |
|------------------------------------------------------------------------------------------------|------------|
| 2. Global electronic properties for iminium species 3a-e (Table S1)                            | <b>S2</b>  |
| <b>3.</b> Summary of the thermochemistry for compounds 1a-i and 2a,b (Figure S1, Tables S2-S4) | <b>S</b> 3 |
| 4. Mannich-type capture experiments                                                            | <b>S8</b>  |
| 5. References                                                                                  | <b>S9</b>  |

#### 1. Generalities

#### **1.1 Experimental**

<sup>1</sup>H NMR spectra were recorded at 300 MHz and <sup>13</sup>C NMR spectra were recorded at 75 MHz on Gemini or Varian spectrometers at room temperature. All solvents were dried according to standard procedures. All commercially available substrates were used as received without further purification.

#### **1.2** Computational

Quantum chemical calculations were performed using the Gaussian 03 package of programs.<sup>1</sup> B3LYP method employing the 6-31+G\*\* basis set with pure *d* functions and gradient techniques using internal coordinates and Newton-Raphson steps with extremely tight optimization convergence criteria were used for geometry optimization and computation of vibrational properties (under STP conditions). Activation and reaction parameters were calculated from the standard thermochemistry output. The PCM model was used to model THF. Electronic properties were studied using the standard NBO keyword.

#### 2. Global electronic properties for iminium species 3a-e

The global electrophilicity ( $\omega$ ) was computed using the procedure introduced by Domingo.<sup>2</sup> The  $\omega$  parameter is a measure of the capability of a molecule to accept electrons and allows a quantitative assessment of electrophiles within the unique electrophilicity scale defined by Parr<sup>4,5</sup> in terms of two static global properties: chemical potential ( $\mu$ ) and chemical hardness ( $\eta$ ) (Equation 1).

$$\omega = \frac{\mu^2}{\eta} \tag{1}$$

The chemical potential ( $\mu$ ) and chemical hardness ( $\eta$ ) can be estimated from the oneelectron energies of the frontier molecular orbitals HOMO and LUMO,  $\varepsilon_H$  and  $\varepsilon_L$  according to

Equations  $2^3$  and  $3^4$ 

$$\mu \approx \frac{\varepsilon_H + \varepsilon_L}{2} \tag{2}$$

$$\eta \approx \varepsilon_L - \varepsilon_H \tag{3}$$

The global electrophilicity ( $\omega$ ) has been computed for iminium species **3a-e** (See Table S1).

**Table S1.** HOMO and LUMO energies, Chemical potential ( $\mu$ ), global hardness ( $\eta$ ) and global electrophilicity ( $\omega$ ) for iminium species **3a-e**.

| Iminium    | HOMO<br>(u.a.) | LUMO<br>(u.a.) | μ<br>(u.a.) | <b>η</b><br>(u.a.) | <b>ø</b><br>(eV) |
|------------|----------------|----------------|-------------|--------------------|------------------|
| <b>3</b> a | -0.54957       | -0.27198       | -0.4108     | 0.2776             | 8.3              |
| <b>3</b> b | -0.52027       | -0.2587        | -0.3862     | 0.2470             | 8.2              |
| 3c         | -0.50969       | -0.26271       | -0.3733     | 0.1276             | 14.9             |
| <b>3</b> d | -0.47003       | -0.25432       | -0.3996     | 0.1353             | 16.1             |
| <b>3</b> e | -0.4371        | -0.30953       | -0.4303     | 0.1629             | 15.5             |



The thermomochemistry for compounds 1a-i and 2a,b was computed at 298.15 K in gas phase and in THF and at 338.15 K in THF (See Figure S1). In Tables S2-4, 1N refers to the <sup>1</sup>N-isomer of benzotriazole, 2N refers to the <sup>2</sup>N-isomer of benzotriazole, R1 refers to a benzotriazole substituted at position C<sub>5</sub> and R2 refers to a benzotriazole substituted at position C<sub>6</sub> (See Figure S1).



Figure S1. Summary of the structures computed (see Tables S2-S4).

| n gas phase     |
|-----------------|
| ÷E              |
| $\mathbf{X}$    |
| S               |
|                 |
| 8               |
| 2               |
| at              |
| 5               |
| computed        |
| Thermochemistry |
| 2               |
|                 |
| able            |
| L               |

|           | Reactant (1a | ı-i, and 2a,b) | Produc      | t (3a-e)    | Produ       | ct (X)      | $\Delta G^{\circ}$     | $\Delta H^{\circ}$     |
|-----------|--------------|----------------|-------------|-------------|-------------|-------------|------------------------|------------------------|
|           | 9            | Н              | G           | Н           | G           | Н           |                        |                        |
| Cpas      | Hartree      | Hartree        | Hartree     | Hartree     | Hartree     | Hartree     | kcal·mol <sup>-1</sup> | kcal·mol <sup>-1</sup> |
| 1a1N      | -569.002725  | -568.952521    | -173.548834 | -173.515254 | -395.274882 | -395.238226 | 112.3                  | 124.9                  |
| 1a2N      | -569.001861  | -568.951385    | -173.548834 | -173.515254 | -395.274882 | -395.238226 | 111.8                  | 124.2                  |
| 1b1N      | -646.392085  | -646.338773    | -250.945748 | -250.909682 | -395.274882 | -395.238226 | 107.6                  | 119.8                  |
| 1b2N      | -646.394943  | -646.34154     | -250.945748 | -250.909682 | -395.274882 | -395.238226 | 109.4                  | 121.5                  |
| 1c1N      | -644.016462  | -643.964387    | -248.519088 | -248.485391 | -395.274882 | -395.238226 | 139.6                  | 151.1                  |
| 1c2N      | -644.017657  | -643.96602     | -248.519088 | -248.485391 | -395.274882 | -395.238226 | 140.4                  | 152.1                  |
| 1d1N      | -660.072928  | -660.020928    | -264.55451  | -264.520872 | -395.274882 | -395.238226 | 152.8                  | 164.3                  |
| 1d2N      | -660.074747  | -660.023456    | -264.55451  | -264.520872 | -395.274882 | -395.238226 | 154.0                  | 165.9                  |
| 1e1N      | -676.120775  | -676.069949    | -280.586287 | -280.552978 | -395.274882 | -395.238226 | 162.9                  | 174.9                  |
| 1e2N      | -676.119739  | -676.068464    | -280.586287 | -280.552978 | -395.274882 | -395.238226 | 162.3                  | 174.0                  |
| 1fR1      | -685.687563  | -685.62993     | -250.945748 | -250.909682 | -434.568457 | -434.527569 | 110.9                  | 119.1                  |
| 1fR2      | -685.687068  | -685.629439    | -250.945748 | -250.909682 | -434.568457 | -434.527569 | 106.3                  | 114.1                  |
| 1gR1      | -760.889489  | -760.82996     | -250.945748 | -250.909682 | -509.771154 | -509.726954 | 108.8                  | 120.9                  |
| 1gR2      | -760.887129  | -760.82759     | -250.945748 | -250.909682 | -509.771154 | -509.726954 | 108.5                  | 120.6                  |
| 1hR1      | -1105.99415  | -1105.9374     | -250.945748 | -250.909682 | -854.886056 | -854.845901 | 108.3                  | 121.3                  |
| 1hR2      | -1105.99354  | -1105.93677    | -250.945748 | -250.909682 | -854.886056 | -854.845901 | 106.8                  | 119.8                  |
| 1iR1      | -850.899147  | -850.838857    | -250.945748 | -250.909682 | -599.790485 | -599.748672 | 101.9                  | 114.1                  |
| 1rR2      | -850.899444  | -850.839236    | -250.945748 | -250.909682 | -599.790485 | -599.748672 | 101.5                  | 113.7                  |
| <b>2a</b> | -634.012014  | -633.974186    | -173.548834 | -173.515254 | -460.286486 | -460.269103 | 102.2                  | 113.3                  |
| 2h        | -711,401713  | -711.360613    | -250.945748 | -250,909682 | -460.286486 | -460.269103 | 102.4                  | 113.5                  |

|               | Reactant (1a | 1-i. and 2a.b) | Produc      | t (3a-e)    | Produ       | ct (X)      | ٥U                     | ٥H٧                    |
|---------------|--------------|----------------|-------------|-------------|-------------|-------------|------------------------|------------------------|
| -<br>(        | IJ           | H              | IJ          | H           | IJ          | H           | 1                      |                        |
| Cpds          | Hartree      | Hartree        | Hartree     | Hartree     | Hartree     | Hartree     | kcal·mol <sup>-1</sup> | kcal·mol <sup>-1</sup> |
| 1a1N          | -569.011259  | -568.961148    | -173.624841 | -173.59134  | -395.351318 | -395.314714 | 22.0                   | 34.6                   |
| 1a2N          | -569.008684  | -568.958446    | -173.624841 | -173.59134  | -395.351318 | -395.314714 | 20.4                   | 32.9                   |
| 1b1N          | -646.400599  | -646.347396    | -251.017491 | -250.981252 | -395.351318 | -395.314714 | 19.9                   | 32.3                   |
| 1b2N          | -646.400752  | -646.347517    | -251.017491 | -250.981252 | -395.351318 | -395.314714 | 20.0                   | 32.3                   |
| 1c1N          | -644.025498  | -643.974278    | -248.592779 | -248.559245 | -395.351318 | -395.314714 | 51.1                   | 63.0                   |
| 1c2N          | -644.025235  | -643.973685    | -248.592779 | -248.559245 | -395.351318 | -395.314714 | 50.9                   | 62.6                   |
| 1d1N          | -660.085278  | -660.034806    | -264.635402 | -264.602004 | -395.351318 | -395.314714 | 61.8                   | 74.1                   |
| 1d2N          | -660.085627  | -660.034506    | -264.635402 | -264.602004 | -395.351318 | -395.314714 | 62.1                   | 73.9                   |
| 1e1N          | -676.133097  | -676.082254    | -280.669089 | -280.635966 | -395.351318 | -395.314714 | 70.7                   | 82.6                   |
| 1e2N          | -676.130544  | -676.079811    | -280.669089 | -280.635966 | -395.351318 | -395.314714 | 69.1                   | 81.0                   |
| 1fR1          | -685.696263  | -685.638813    | -251.017491 | -250.981252 | -434.645209 | -434.604419 | 21.1                   | 33.3                   |
| 1fR2          | -685.695664  | -685.638258    | -251.017491 | -250.981252 | -434.645209 | -434.604419 | 20.7                   | 33.0                   |
| 1gR1          | -760.899522  | -760.84013     | -251.017491 | -250.981252 | -509.848161 | -509.803888 | 21.3                   | 34.5                   |
| <b>1gR2</b>   | -760.897545  | -760.838272    | -251.017491 | -250.981252 | -509.848161 | -509.803888 | 20.0                   | 33.3                   |
| 1hR1          | -1106.00238  | -1105.94578    | -251.017491 | -250.981252 | -854.957315 | -854.917239 | 17.3                   | 29.7                   |
| 1hR2          | -1106.0021   | -1105.94549    | -251.017491 | -250.981252 | -854.957315 | -854.917239 | 17.1                   | 29.5                   |
| 1iR1          | -850.91054   | -850.850495    | -251.017491 | -250.981252 | -599.860165 | -599.818365 | 20.6                   | 31.9                   |
| 1rR2          | -850.911635  | -850.851617    | -251.017491 | -250.981252 | -599.860165 | -599.818365 | 21.3                   | 32.6                   |
| <b>2a</b>     | -634.02227   | -633.982132    | -173.624841 | -173.59134  | -460.382725 | -460.365341 | 9.2                    | 16.0                   |
| $\mathbf{2b}$ | -711.413535  | -711.370878    | -251.017491 | -250.981252 | -460.382725 | -460.365341 | 8.4                    | 15.2                   |

Table S3. Thermochemistry computed at 298.15 K in THF

S6

|               | Reactant (1a | -i, and 2a,b) | Product     | (3a-e)      | Produc      | tt(X)       | $\Delta G^{\circ}$     | $\Delta H^{\circ}$     |
|---------------|--------------|---------------|-------------|-------------|-------------|-------------|------------------------|------------------------|
| ζ             | 6            | Н             | G           | Н           | G           | Н           |                        |                        |
| Cpds          | Hartree      | Hartree       | Hartree     | Hartree     | Hartree     | Hartree     | kcal·mol <sup>-1</sup> | kcal·mol <sup>-1</sup> |
| 1a1N          | -569.018204  | -568.958027   | -173.629419 | -173.590026 | -395.356335 | -395.313021 | 20.4                   | 34.5                   |
| 1a2N          | -569.015468  | -568.955372   | -173.629419 | -173.590026 | -395.356335 | -395.313021 | 18.6                   | 32.8                   |
| 1b1N          | -646.407951  | -646.344      | -251.022455 | -250.979628 | -395.356335 | -395.313021 | 18.3                   | 32.2                   |
| 1b2N          | -646.408107  | -646.344129   | -251.022455 | -250.979628 | -395.356335 | -395.313021 | 18.4                   | 32.3                   |
| 1c1N          | -644.032569  | -643.971113   | -248.597366 | -248.557841 | -395.356335 | -395.313021 | 49.5                   | 62.9                   |
| 1c2N          | -644.032349  | -643.970526   | -248.597366 | -248.557841 | -395.356335 | -395.313021 | 49.4                   | 62.5                   |
| 1d1N          | -660.092242  | -660.031735   | -264.639966 | -264.600669 | -395.356335 | -395.313021 | 60.2                   | 74.1                   |
| 1d2N          | -660.092678  | -660.031442   | -264.639966 | -264.600669 | -395.356335 | -395.313021 | 60.5                   | 73.9                   |
| 1e1N          | -676.140105  | -676.079272   | -280.67361  | -280.634723 | -395.356335 | -395.313021 | 69.1                   | 82.5                   |
| 1e2N          | -676.137536  | -676.076839   | -280.67361  | -280.634723 | -395.356335 | -395.313021 | 67.5                   | 81.0                   |
| 1fR1          | -685.70421   | -685.635013   | -251.022455 | -250.979628 | -434.650813 | -434.602326 | 19.4                   | 33.3                   |
| 1fR2          | -685.703605  | -685.634458   | -251.022455 | -250.979628 | -434.650813 | -434.602326 | 19.0                   | 32.9                   |
| 1gR1          | -760.907742  | -760.836115   | -251.022455 | -250.979628 | -509.854246 | -509.801571 | 19.5                   | 34.5                   |
| 1gR2          | -760.90575   | -760.834258   | -251.022455 | -250.979628 | -509.854246 | -509.801571 | 18.2                   | 33.3                   |
| 1hR1          | -1106.010196 | -1105.942137  | -251.022455 | -250.979628 | -854.962815 | -854.915296 | 15.6                   | 29.6                   |
| 1hR2          | -1106.009919 | -1105.941848  | -251.022455 | -250.979628 | -854.962815 | -854.915296 | 15.5                   | 29.4                   |
| 1iR1          | -850.918845  | -850.84653    | -251.022455 | -250.979628 | -599.880102 | -599.828511 | 10.2                   | 24.1                   |
| 1rR2          | -850.919937  | -850.847653   | -251.022455 | -250.979628 | -599.880102 | -599.828511 | 10.9                   | 24.8                   |
| <b>2</b> a    | -634.027761  | -633.980459   | -173.629419 | -173.590026 | -460.385077 | -460.365025 | 8.3                    | 15.9                   |
| $2\mathbf{b}$ | -711.419383  | -711.36892    | -251.022455 | -250.979628 | -460.385077 | -460.365025 | 7.4                    | 15.2                   |

Table S4. Thermochemistry computed at 338.15 K in THF

# 4. Mannich-type capture experiments: reaction of 4a with iminium releasing compounds 1a-i and 2a,b

Compound **4a** (1 mmol) was added to a solution of electrophile (1 mmol of **1a-1i** or **2a,b**; see Table 4 in manuscript) in anhydrous THF (20 mL) and heated under reflux conditions for 18 hours. The solvent was then removed under reduced pressure. The sample was then dissolved in CDCl<sub>3</sub> (2 mL) and analyzed by <sup>1</sup>H NMR. Completeness of the reaction was monitored by integration of the relevant signals of the Mannich-type capture product.

#### 5. References

- 1. Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian. Inc., Wallingford CT, 2004.
  - See for example: (a) L. R. Domingo and P. Pérez, Org. Biomol. Chem., 2011, 9, 7168-7175; (b) L. R. Domingo and J. A. Sáez, Org. Biomol. Chem., 2009, 7, 3576-3583; (c) L. R. Domingo, E. Chamorro, and P. Pérez, J. Org. Chem., 2008, 73, 4615-4624; (d) L. R. Domingo, J. A. Sáez, and P. Pérez, Chem. Phys. Lett., 2007, 438, 341-345; (e) M. J. Aurell, L. R. Domingo, P. Pérez, and R. Contreras, Tetrahedron, 2004, 60, 11503-11509; (f) P. Perez, L. R. Domingo, M. J. Aurell, and R. Contreras, Tetrahedron. 2003. 59. 3117-3125; (g) L. R. Domingo. P. Perez. and R. Contreras. J.

*Org. Chem.*, 2003, **68**, 6060-6062; (*h*) L. R. Domingo, M. J. Aurell, P. Pérez, and R. Contreras, *Tetrahedron*, 2002, **58**, 4417-4423.

- R. G. Parr and W. Yang, *Density Functional Theory of Atoms and Molecules*; Oxford University: New-York, 1989.
- 4. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 1982, 105, 7512-7516.
- 5. R. G. Parr, L. von Szentpály, S. Liu, J. Am. Chem. Soc., 1999, 121, 1922.