Electronic Supplementary Information

Iron-surfactant nanocomposite catalyzed benzylic oxidation in water

Fruzsina Szabó^a, Bálint Pethő^a, Zsombor Gonda^a and Zoltán Novák^a

 ^a Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/a H-1117 Budapest, Hungary, Phone: +36-1-272-2500#1610, fax: 372-2909, e-mail:novakz@elte.hu

General	2
Effect of TBHP loading and the role of SDS in different solvents.	3
The influence of the carbon chain length on the conversion	4
The effect of SDS amount on the conversion	5
Addition of excess TBHP, FeCl ₃ /Fe ₂ (SO ₄) ₃ , SDS after 2 hours	6
Oxygen evolution measurement	7
The influence of sulfate, chloride ions	9
Preparation of starting materials	. 11
General procedure for Fe catalyzed benzylic oxidation	.13
Products	. 14
NMR spectras	. 28
MS Spectras	54
References	. 80

General

Unless otherwise indicated, all starting materials were obtained from commercial suppliers, and were used without further purification. Analytical thin-layer chromatography (TLC) was performed on Merck DC pre coated TLC plates with 0.25 mm Kieselgel 60 F₂₅₄. Visualization was performed with a 254 nm UV lamp. The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-250 spectrometer in CDCl₃. Chemical shifts are expressed in parts per million (δ) using residual solvent protons as internal standards (δ 7.26 for ¹H, δ 77.0 for ¹³C). Coupling constants (*J*) are reported in Hertz (Hz). Splitting patterns are designated as s (singlet), d (doublet), t (triplet), m (multiplet). Combination gas chromatography and low resolution mass spectrometry was obtained on an Agilent 6890N Gas Chromatograph (30 m x 0.25 mm column with 0.25 µm HP-5MS coating, He carrier gas) and Agilent 5973 Mass Spectrometer (Ion source: EI+, 70eV, 230°C; interface: 300°C). IR spectra were obtained on a Bruker Alpha spectrometer on a single-reflection diamond ATR unit. All melting points were measured on Büchi 501 apparatus and are uncorrected. High-resolution mass spectra were recorded on an Agilent Technologies 6210 Time of Flight mass spectrometer.

Effect of TBHP loading and the role of SDS in different solvents.

Effect of TBHP loading and the role of SDS in different solvents. Fluorene (1 mmol) TBHP (70 % aq, 5 mmol); FeCl₃*6 H₂O (0.02 mmol, 2%) 5 w/w% SDS solution in water or ^tBuOH (1 mL), at 50°C, % composition of the product determined by GC.

Fluorene (1 mmol) TBHP (70% aq, 5 mmol); FeCl₃*6 H₂O (0.02 mmol, 2%) 5 w/w% SDS solution in water or 'BuOH (1 mL), at 50°C. % composition of the product determined by GC

The influence of the carbon chain length on the conversion

A screw capped vial with stir bar was charged with the 2 mol% FeCl₃, 2 mol% SMS, SOS or SDS and water. Fluorene (1 eq.) was added followed by 5 eq. TBHP (70% aq.). The reaction vessel was closed, and stirred for 24 hours at 50°C. Samples were taken and analyzed by GC.

The effect of SDS amount on the conversion

A screw capped vial with stir bar was charged with the 2 mol% $FeCl_3$, x mol% SDS and water. Fluorene (1 eq.) was added followed by 5 eq. TBHP (70% aq.). The reaction vessel was closed, and stirred for 4 hours at 50°C. Samples were taken and analyzed by GC.

Addition of excess TBHP, FeCl₃/Fe₂(SO₄)₃, SDS after 2 hours

However, addition of 2 mol% iron salt was sufficient to reach full conversion of fluorene to fluorenone in short reaction time, the oxidation of ethylbenzene to acetophenone was not completed in the presence of either 2 mol% FeCl₃ or 2 mol% Fe₂(SO₄)₃ (60% and 80% conversions were obtained after 24 hours respectively). In order to reach full conversion of this less reactive substrate we added a second portion of additives after 2 hours into the reaction mixture. Addition of TBHP ensures the completion of the reaction in 24 hours, and joint addition of extra TBHP/FeCl3 or TBHP/FeCl3/SDS did not cause better acceleration.^[12] Interestingly, reactivation of the catalyst system in case of Fe₂(SO₄)₃ did not occurred as significantly as in the case of FeCl₃.

The effect of additional reagents in the FeCl_/SDS system

The effect of additional reagents in the Fe₂(SO₄)₃/SDS system

A screw capped vial with stir bar was charged with the 2 mol% catalyst, 2 mol% SDS and water. Ethyl benzene or fluorene (1 eq.) was added followed by 5 eq. TBHP (70% aq.). The reaction vessel was closed, and stirred for 2 hours at 50°C. Then second portion of iron salt, SDS, TBHP was added, and stirring was continued for further 22 hours. Samples were taken and analyzed by GC.

Oxygen evolution measurement

When ethylbenzene substrate was in the reaction mixture of FeCl₃, SDS and TBHP in water the oxygen slowly absorbed back into the solution. Oxygen volume was measured with gas burette:

Oxygen evolution experiments. TBHP (70% aq, 5 mmol, 5 eq.); $FeCl_3*6 H_2O$ (0.05 mmol, 5%), SDS (0.05 mmol, 5%), H_2O (1 ml) at 50°C. % composition of the product determined by GC. **•**: $FeCl_3+SDS$. **•**: $FeCl_3 \blacktriangle$ $FeCl_3+SDS + ethylbenzene (1 mmol, 1 eq.)$, ***** $FeCl_3+SDS + Fluorene (1 mmol, 1 eq.)$.

The influence of sulfate, chloride ions

A screw capped vial with stir bar was charged with 83 mg (0.5 mmol, 1 eq.) fluorene, the 2 mol% catalyst, 2.9 mg (0.01 mmol, 2 mol%) SDS and the appropriate salt (Na₂SO₄ or NaCl). 0.5 mL water was added followed by 323 μ L TBHP (2.5 mmol, 5 eq., 70% aq.). The reaction vessel was closed, and stirred for 2 hours at 50°C. Samples were taken and analyzed with GC.

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Preparation of starting materials

2-(phenylethynyl)-9*H*-fluorene¹

A round-bottom flask was charged with 292 mg (1 mmol, 1 eq.) 2-iodo-9H-fluorene, 21 mg (0.03 mmol, 3 mol%) bis(triphenylphosphine)palladium(II) dichloride, and 5.7 mg (0.03 mmol, 3 mol%) copper(I) iodide. The flask was fit with a rubber septum, and purged with argon. DIPA (4 mL) and 165 μ L phenylacetylene (1.5 mmol, 1.5 eq.) was added via syringe and the reaction was stirred at 50 °C for 24 hours. The reaction mixture was filtered, than diethyl ether was added. The solution washed with 10 % HCl (aq.) and water, dried with MgSO₄, and concentrated under vacuo. The crude product was purified with column chromatography (in hexane-EtOAc).

White solid. 113 mg (0.42 mmol, yield: 42%) Rf: 0.65 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.82-7.76 (m, 3H), 7.64-7.57 (m, 4H), 7.46-7.33 (m, 5H), 3.92 (s, 2H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 143.4, 143.1, 141.7, 141, 131.5, 130.4, 128.30, 128.08, 127.07, 126.83, 125.00, 123.39, 121.16, 120.12, 119.7, 90.2, 89.3, 36.7 ppm. v_{max} 2919, 1451, 832, 753, 730, 670 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 266 (100, [M⁺]), 189 (10), 133 (15). m.p.: 164-168°C

(E)-methyl 3-(9*H*-fluoren-2-yl)acrylate²

A round-bottom flask was charged with 584 mg (2 mmol, 1 eq.) 2-iodo-9*H*-fluorene, and 22.4 mg (0.1 mmol, 5 mol%) palladium(II) acetate. The flask was fitted with a rubber septum, and purged with argon. DMF (2mL), 418 μ L TEA (3 mmol, 1.5 eq.) and 182 μ L (3 mmol, 1.5 eq.) methyl acrylate was added via syringe and the reaction was stirred at 80 °C for 24 hours. After completion, the reaction mixture was filtered, and poured onto ice. The precipitated crude product was filtered, and purified by column chromatography (in hexane-EtOAc).

White solid. 309 mg (1.2 mmol, yield: 62%) Rf: 0.48 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.68-7.61 (m, 3H), 7.55 (s, 1H), 7.42 (t, 2H *J* = 6.16 Hz), 7.30-7.19 (m, 2H), 6.36 (d, 1H *J* = 15.95 Hz), 3.76 (s, 2H), 3.71 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 168.1, 145.7, 144.4, 144.3, 144.2, 141.3, 133.3, 127.9, 127.9, 127.4, 125.6, 124.9, 120.8, 120.6, 117.1, 52.1, 37.2 ppm. v_{max} 2946, 2928, 1709, 1636, 1322, 1169, 977, 836, 741 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 250 (100, [M⁺]), 218 (75), 189 (86), 165 (42), 94 (45). m.p.: 134-137°C

General procedure for Fe catalyzed benzylic oxidation:

A test tube with a septum cap and a stir bar was charged with the catalyst, SDS and water. The starting material and TBHP was added with stirring. The reaction vessel was closed and the reaction was stirred for x hours at 50° C. After cooling to ambient temperature, the solution was washed with EtOAc, dried over magnesium sulfate and concentrated under vacuo. The crude product was purified with chromatography (in hexane/EtOAc).

Substrate	Catalyst	SDS/	TBHP/ eq.	Time/	Conversion in 5 h	
		mol%		h	SDS	without SDS
fluorene	2 mol% FeCl ₃	2	5	2h	100	20
2-ethyl tiophene				3h	63	50
9H-xanthene				24h	100	36
9,10-dihydroanthracene			10	24h	100	40
2-(phenylethynyl)-9H-fluorene	2 mol% Fe ₂ (SO ₄) ₃	2	5 + 5 after 24h	48h	25	4
(E)-methyl 3-(9H-fluoren-2-yl)acrylate				48h	74	16
2-iodo-9H-fluorene			5	24h	52	0
methyl 7-iodo-9H-fluorene-4- carboxylate				24h	100	7
diphenylmethane				24h	93	34
2-bromo-9H-fluorene	$2 \text{ mol\%} \\ \text{Fe}_2(\text{SO}_4)_3$	4	5 + 4 after 5 h	24h	90	16
2,7-dibromo-9H-fluorene					9	5
(methoxymethyl)benzene	2.5 mol% Fe ₂ (SO ₄) ₃	5	5	24h	49	2
2-benzylphenyl acetate					58	47
N-(2-benzylphenyl)acetamide					87	39
propylbenzene					49	27
butylbenzene					47	26
ethylbenzene					72	72
methyl 2-phenylacetate			5 + 5 after 8 h		40	11
1-ethyl-4-methoxybenzene	5 mol% FeCl ₃	5	5 + 5 after 1.5 h	2.5h	73	24
isochroman			5	10 min	92	27
1,3-dihydroisobenzofuran			5	10 min	100	35
2-phenylacetonitrile	5 mol% Fe ₂ (SO ₄) ₃	5	6	24	100	18
1-tosyl-1,2,3,4-tetrahydroquinoline			5 + 1 after 8h	24	22	3
1-benzylindole			5	24	8	5
2,3-cyclopentenopyridine					3	0
1,2,3,4-tetrahydronaphthalene					67	29
benzyl alcohol					93	0

Products

Fluorene-9-one(2a)³

A conical test tube was charged with FeCl_3 (5.4 mg, 0.02 mmol, 2 mol%), SDS (5.8 mg, 0.02 mmol, 2 mol%), and 1 mL of water. Then fluorene (166 mg, 1 mmol) was added followed by TBHP (0.65 mL, 5 mmol). The reaction vessel was closed with rubber septa, and stirred for 2 hours at 50 °C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Yellow solid 180 mg (1 mmol, quantitative yield). Rf: 0.50 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.45 (t, 8H, *J* = 46.0 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 193.8, 144.3, 134.6, 128.9, 124.1, 120.2 ppm. v_{max} 1710, 1597, 1449, 1295, 1149, 916, 731 440 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 180 (100, [M⁺]), 152 (50), 126 (15), 76 (25), 63 (10). m.p. 79,5-80 °C (lit.): 80-83 °C

2-iodo-9*H***-fluoren-9-one** (**2b**)⁴

A conical test tube was charged with $Fe_2(SO_4)_3$ (1.6 mg, 0.006 mmol, 2 mol%), SDS (1.7 mg, 0.006 mmol, 2 mol%), and 0.34 mL of water. Then 2-iodo-9*H*-fluorene (100 mg, 0.3 mmol) was added followed by TBHP (0.19 mL, 1.5 mmol). The reaction vessel was closed with rubber septa, and stirred for 5 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Yellow solid 83 mg (0.27 mmol, yield: 79%). Rf: 0.51 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.90 (s, 1H), 7.76 (dd, 1H J_1 = 1.58 Hz, J_2 = 7.74 Hz), 7.61 (d, 1H J = 7.42 Hz) 7.48-7.43 (m, 2H), 7.34-7.28 (m, 1H), 7.21 (d, 1H J = 7.74 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 192.3, 143.6, 143.5, 143.0, 135.6, 134.9, 133.1, 129.5, 124.4, 121.9, 120.4, 93.9 ppm. v_{max} 2921, 2851, 1713, 1587, 1437, 1403, 1254, 1184, 1106, 816, 758, 731, 654,

453 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 306 (75, [M⁺]), 151 (100), 139 (25), 75 (30). m.p. 141-143°C (lit.): 142-144 °C

2-bromo-9*H*-fluoren-9-one (2d)³

A conical test tube was charged with $Fe_2(SO_4)_3$ (16 mg, 0.04 mmol, 2 mol%), SDS (23 mg, 0.08 mmol, 4 mol%), and 2 mL of water. Then 2-bromo-9*H*-fluorene (488 mg, 2 mmol) was added followed by TBHP (1.29 mL, 10 mmol). The reaction vessel was closed with rubber septa, and stirred for 4 hours at 50°C, then TBHP (1.0 ml, 8 mmol, 4 eq.) was added and the reaction mixture was stirred for further 20 hours (24 hours total reaction time). After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified with chromatography (hexane/EtOAc).

Yellow solid 445 mg (1.72 mmol, yield: 86%). Rf: 0.77 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.59 (d, 1H *J* = 1.74), 7.51 (d, 1H *J* = 7.42), 7.46 (dd, 1H *J*₁ = 1.90 *J*₂ = 7.90), 7.38-7.35 (m, 2H), 7.24-7.16 (m, 2H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 192.7, 144.0, 143.3, 137.4, 136.1, 135.4, 134.0, 129.8, 127.8, 124.9, 123.3, 122.1, 120.8 ppm. v_{max} 1714, 1592, 1441, 1185, 818, 733, 658, 456 cm⁻¹ MS (EI, 70 eV): *m*/*z* (%): 258(80, [M⁺]), 151(100), 75(20). m.p. 139-141 °C (lit.): 146-148 °C

2,7-dibromo-9*H*-fluoren-9-one (2e) 5,6

A conical test tube was charged with $Fe_2(SO_4)_3$ (16 mg, 0.04 mmol, 2 mol%), SDS (23 mg, 0.08 mmol, 4 mol%), and 2 mL of water. Then 2,7-dibromo-9*H*-fluorene (648 mg, 2 mmol) was added followed by TBHP (1.3 mL, 10 mmol). The reaction vessel was closed with rubber septa, and stirred for 4 hours at 50°C, then TBHP (1 ml, mmol, 4 eq.) was added and the reaction mixture was stirred for further 20 hours (24 hours total reaction time). After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Yellow solid 645 mg (1.9 mmol, yield: 95% Rf: 0.63 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.70 (s, 2H), 7.58 (dd, 2H, J_1 = 1.74 Hz J_2 = 8 Hz). 7.34 (d, 2H J = 8.10 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 190.8, 142.2, 137.4, 135.2, 127.7, 123.2, 121.8 ppm. v_{max} 3080, 1719, 1590, 1443, 1242, 1178, 1052, 902, 821, 680, 589, 470 cm⁻¹ MS (EI, 70 eV): m/z (%): 338 (75, [M⁺]), 231 (20), 150 (100), 98 (23), 75 (42). m.p.: 200-201°C (lit.): 203-205°C

Methyl 7-iodo-9-oxo-9H-fluorene-4-carboxylate (2f)

A conical test tube was charged with $Fe_2(SO_4)_3$ (1.4 mg, 0.0034 mmol, 2 mol%), SDS (1 mg, 0.0034 mmol, 2 mol%), and 0.17 mL of water. Then methyl 7-iodo-9*H*-fluorene-4-carboxylate (60.6 mg, 0.17 mmol) was added followed by TBHP (0.11 mL, 0.85 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified with chromatography (hexane/EtOAc).

Yellow solid 50.6 mg (0.14 mmol, yield: 80%). Rf: 0.50 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 8.07-7.78 (m, 5H), 7.37 (t, 1H *J* = 7.50 Hz), 3.99 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 191.5, 166.7, 143.5, 142.3, 136.5, 136.5, 135.8, 134.7, 132.9, 129.0, 128.0, 127.5, 126.8, 95.4, 52.6 ppm. v_{max} 2923, 2851, 1717, 1579, 1433, 1292, 1272, 1242, 1193, 1175, 1137, 989, 833, 754, 740 cm⁻¹. MS (EI, 70 eV): *m/z* (%): 364 (98, [M⁺]), 333(42), 305 (40), 207 (60), 150 (100), 138 (25), 75 (27). m.p. 180°C HRMS calcd. for C₁₅H₉IO₃ [M+H]⁺ 364.9669 found 364.9676

2-(phenylethynyl)-9*H*-fluoren-9-one (2g)⁷

Yellow solid. 36 mg (0.13 mmol, yield: 64%) Rf: 0.51 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.69 (d, 1H *J* = 0.95 Hz), 7.58-7.51 (m, 2H), 7.47-7.37 (m, 5H), 7.30-7.17 (m, 4H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 193.0, 143.9, 143.6, 137.6, 134.8, 134.2,

134.1, 131.6, 129.3, 128.5, 128.4, 127.2, 124.4, 124.1, 122.7, 120.6, 120.2, 91.0, 88.6 ppm. v_{max} 2917, 2850, 1714, 1600, 755, 733, 688 cm⁻¹ MS (EI, 70 eV): m/z (%): 280 (100, [M⁺]), 250 (30), 207 (40), 140 (15). m.p.: 140-143 °C

(E)-methyl 3-(9-oxo-9H-fluoren-2-yl)acrylate (2h)

Yellow solid. 140 mg (0.53mmol, yield: 53%) Rf: 0.29 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.74 (s, 1H), 7.64 – 7.47 8m, 6H), 7.31-7.28 (m, 1H), 6.42 (d, 1H), 3.79 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 192.9, 167.0, 145.6, 143.6, 143.2, 135.3, 134.9, 134.8, 134.6, 134.4, 129.6, 124.4, 122.7, 120.7, 118.5, 51.8 ppm. v_{max} 3059, 2917, 1706, 1580, 1437, 1317, 1169, 1004, 840, 719 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 264 (100, [M⁺]), 233 (98), 205 (40), 176 (75), 151 (42), 88 (45). m.p.: 169-171 °C

Acetophenone (2i)³

A conical test tube was charged with $Fe_2(SO_4)_3$ (20 mg, 0.05 mmol, 2.5 mol%), SDS (28.8 mg, 0.1 mmol, 5 mol%), and 2 mL of water. Then ethylbenzene (245 µl, 212 mg, 2 mmol) was added followed by TBHP (1.29 mL, 10 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50 °C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

A conical test tube was charged with $Fe_2(SO_4)_3$ (40 mg, 0.1 mmol, 5 mol%), SDS (28.8 mg, 0.1 mmol, 5 mol%), and 2 mL of water. Then benzyl-acohol (207.2 µl, 216.3 mg, 2 mmol) was added followed by TBHP (1.29 mL, 10 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Colorless oil 180 mg (1.5 mmol, yield: 75%, from ethylbenzene), 235 mg (1.96 mmol, yield: 98% from 1-phenyl-1-ethanol) Rf: 0.49 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.89-7.86 (m, 2H), 7.51-7.348 (m, 3H), 2.52 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 198.2, 137.0, 133.0, 128.5, 26.5 ppm. v_{max} 2926, 2855, 1684, 1599, 1467, 1358, 1262, 954, 758, 688, 587 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 120 (32, [M⁺]), 105 (100), 77 (85), 51 (45).

Propiophenone (2j)⁸

A conical test tube was charged with $Fe_2(SO_4)_3$ (5 mg, 0.0125 mmol, 2.5 mol%), SDS (14.4 mg, mmol, 5 mol%), and 355 µl of water. Then propylbenzene (139.4 µl, 120.18 mg, 1 mmol) was added followed by TBHP (645 µl, 5 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50 °C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Colorless oil 56 mg (0.42 mmol, yield: 42%), Rf: 0.65 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.87 (d, 2H, *J* = 6.95 Hz), 7.48-7.34 (m, 3H, *J* = 7.42 Hz), 2.92 (q, 2H, *J* = 14.44 Hz), 1.14 (t, 3H, *J* = 7.20 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 200.2, 137.3, 133.3, 128.9, 128.3, 32.2, 8.6 ppm. v_{max} 2978, 2938, 1685, 1449, 1319, 1218, 1180, 1014, 950, 743, 689 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 134 (15, [M⁺]), 105 (100), 77 (50), 51 (15).

Butirophenone (2k)⁹

A conical test tube was charged with $Fe_2(SO_4)_3$ (5 mg, 0.0125 mmol, 2.5 mol%), SDS (14.4mg, mmol, 5 mol%), and 355 µl of water. Then butylbenzene (156.1 µl, 134.2 mg, 1 mmol) was added followed by TBHP (645 µl, 5 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Colorless oil 63.8 mg (0.43 mmol, yield: 43%), Rf: 0.67 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.86 (d, 2H, *J* = 8.53 Hz), 8.16 (m, 3H), 2.85 (t, 2H, *J* = 7.27 Hz), 1.68 (d, 2H, *J* = 22.00 Hz), 0.92 (t, 3H, *J* = 7.42) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 200.8, 137.5, 133.2, 128.9, 18.4, 40.9, 18.1, 14.3 ppm. v_{max} 2962, 2933, 2874, 1683, 1448, 1315, 1272, 1212, 1001, 753, 745, 689 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 148 (15, [M⁺]), 120 (10), 105 (100), 77 (45), 51 (15).

Methyl 5-oxo-5-phenylpentanoate (2l)¹⁰

A conical test tube was charged with $Fe_2(SO_4)_3$ (5mg, 0.0125mmol, 2.5 mol%), SDS (14.4 mg, mmol, 5 mol%), and 355 µl of water. Then 5-phenylvaleric acid (192.2 mg, 1 mmol) was added followed by TBHP (645 µl, 5 mmol). The reaction vessel was closed with rubber septa, and stirred for 48 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Colorless oil 56 mg (0.42 mmol, yield: 42%), Rf: 0.36 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.88 (d, 2H, *J* = 7.11 Hz), 7.52-7.35 (m, 3H), 3.61 (s, 3H), 2.98 (t, 2H, *J* = 7.19 Hz), 2.38 (t, 2H, *J* = 7.19 Hz), 2.00 (quint., 2H, *J* = 7.30) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 200.0, 174.1, 137.2, 133.5, 129.0, 128.4, 52.0, 37.8, 33.5, 19.7 ppm. v_{max} 2951, 1732, 1682, 1448, 1437, 1366, 1209, 1175, 1149, 1015, 742, 690 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 206 (2, [M⁺]), 175 (5), 147 (6), 133 (5), 120 (12), 105 (100), 77 (40).

Methyl 4-heptanoylbenzoate (2m)¹¹

A conical test tube was charged with $Fe_2(SO_4)_3$ (5 mg, 0.0125 mmol, 2.5 mol%), SDS (14.4 mg, mmol, 5 mol%), and 355 µl of water. Then 4-heptylbenzoic acid (234.3 mg, 1 mmol) was added followed by TBHP (645 µl, 5 mmol). The reaction vessel was closed with rubber septa, and stirred for 48 hours at 50°C. After cooling to room temperature, the solution was washed

with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

White solid 100.8 mg (0.40 mmol, yield: 40%), Rf: 0.53 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 8.08 (2, 2H, *J* = 8.37 Hz), 7.97 (d, 2H, *J* = 8.53 Hz), 3.91 (s, 3H), 2.95 (t, 2H, *J* = 7.35 Hz), 1.70 (quint., 2H, *J* = 14.45 Hz), 1.36-1.25 (m, 6H), 0.85 (t, 3H, *J* = 6.64 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 200.3, 166.6, 140.7, 134.0, 1301, 128.3, 52.8, 39.3, 32.0, 29.3, 24.5, 22.8, 14.4 ppm. v_{max} 2957, 2929, 2871, 1720, 1675, 1435, 1278, 1239, 1194, 1108, 958, 764, 687 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 248 (3, [M⁺]), 217 (5), 189 (15), 178 (80), 163 (100), 147 (20), 135 (25), 120 (10), 104 (15), 76 (10). m.p.: 73-75°C

1-(4-methoxyphenyl)ethanone (2n)¹²

A conical test tube was charged with FeCl₃ (27 mg, 0.1 mmol, 5 mol%), SDS (28.8 mg, 0.1 mmol, 5 mol%), and mL of water. Then 1-ethyl-4-methoxybenzene (283 μ l, 272 mg, 2 mmol) was added followed by TBHP (1.29 mL, 10 mmol). The reaction vessel was closed with rubber septa, and stirred for 90 min at 50°C, then TBHP (1.29 ml, 10 mmol, 5 eq) was added and the reaction mixture was stirred for further 1 hour (2.5 hours total reaction time). After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

White solid 115 mg (0.77 mmol, yield: 40%) Rf: 0.21 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.82 (d, 2H *J* = 8.85 Hz), 6.81 (d, 2H, *J* = 8.85 Hz), 3.74 (s, 3H), 2.43 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 196.5, 163.3, 130.3, 113.4, 55.2, 26.1 ppm. v_{max} 2965, 2842, 1666, 1597, 1356, 1247, 1019, 830, 575 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 150 (40, [M⁺]), 135 (100), 107 (22), 92 (30), 77 (40). m.p. 32-35 °C (lit.): 37-39 °C

1-(thiophen-2-yl)ethanone (2p)¹³

A conical test tube was charged with FeCl_3 (16.2 mg, 0.06 mmol, 2 mol%), SDS (17.4 mg, 0.06 mmol, 2 mol%), and 3 mL of water. Then 2-ethylthiophene (340 µl, 224.3 mg, 3 mmol) was added followed by TBHP (1.94 mL, 15 mmol). The reaction vessel was closed with rubber septa, and stirred for 3 hours at 50°C. After cooling to room temperature, the solution

was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Brown oil 123 mg (0.98 mmol, yield: 33%) Rf: 0.58 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.66 (dd, 1H J_1 = 1.11 Hz, J_2 = 3.79 Hz), 7.60 (dd, 1H J_1 = 1.11 Hz, J_2 = 5.06 Hz), 7.09 (dd, 1H J_1 = 4.90 Hz, J_2 = 3.79 Hz), 2.52 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 191.1, 144.9, 134.2, 132.9, 128.5 ppm. v_{max} 2978, 2930, 1660, 1413, 1357, 1271, 857, 721, 590 cm⁻¹ MS (EI, 70 eV): m/z (%): 126 (40, [M⁺]), 111 (100), 83 (15), 57 (12).

Benzophenone (2q)³

A conical test tube was charged with $Fe_2(SO_4)_3$ (16 mg, 0.04 mmol, 2 mol%), SDS (11.6 mg, 0.04 mmol, 2 mol%), and 3 mL of water. Then diphenylmethane (333 µl, 336.5 mg, 2 mmol) was added followed by TBHP (1.29 mL, 10 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Colorless oil 326 mg (1.79 mmol yield: 90 %) Rf: 0.53 (in hexane:EtOAc = 3:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.71 (d, 4H *J* = 6.79 Hz), 7.50 (t, 2H J = 7.35 Hz), 7.39 (t, 4H, *J* = 7.27 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 196.6, 137.4, 132.3, 129.9, 128.2 cm⁻¹ v_{max} 3060, 1655, 1446, 1274, 940, 918, 694, 637, 437 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 182 (75, [M⁺]), 105 (100), 77 (72), 51 (30).

2-benzoylphenyl acetate (2r)¹⁴

A conical test tube was charged with $Fe_2(SO_4)_3$ (10 mg, 0.025 mmol, 2.5 mol%), SDS (14.4 mg, 0.05 mmol, 5 mol%), and 1 mL of water. Then 2-benzylphenyl acetate (226 mg, 1 mmol) was added followed by TBHP (645 μ L, 5 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was

washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Yellow oil 68 mg (0.28 mmol, yield: 28% Rf: 0.72 (in hexane:EtOAc =2:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.77 (d, 2H *J* = 7.27 Hz), 7.55 (t, 2H *J* = 6.48 Hz), 7.45 (t, 2H *J* = 7.35 Hz), 7.33 (t, 1H *J* = 7.11 Hz), 7.20 (d, 1H *J* = 7.90 Hz), 1.94 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 194.8, 169.1, 148.7, 137.5, 133.0, 132.2, 131.4, 130.4, 129.7, 128.3, 125.6, 123.2, 20.5 ppm. v_{max} 1765, 1662, 1448, 1184, 1102, 1009, 906, 761, 698, 633 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 240 (5, [M⁺]), 197 (100), 121 (45), 105 (30), 77 (43).

N-(2-benzoylphenyl)acetamide (2s)¹⁵

A conical test tube was charged with $Fe_2(SO_4)_3$ (10 mg, 0.025 mmol, 2.5 mol%), SDS (14.4 mg, 0.05 mmol, 5 mol%), and 1 mL of water. Then N-(2-benzylphenyl)acetamide (225 mg, 1 mmol) was added followed by TBHP (645 µL, 5 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Off-white solid 148 mg (0.62 mmol, yield: 62% Rf: 0.51 (in hexane:EtOAc =2:1) ¹H NMR (250 MHz, CDCl₃): δ = 10.84 (s, 1H), 8.64 (d, 1H *J* = 8.21 Hz), 7.71 (d, 2H *J* = 7.11 Hz), 7.63-7.46 (m, 5H), 7.09 (t, 1H *J* = 7.58 Hz), 2.23 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 199.5, 169.0, 140.3, 138.4, 134.1, 133.3, 132.4, 129.7, 128.2, 123.1, 121.9, 121.3, 25.0 ppm. v_{max} 1698, 1580, 1518, 1444, 1289, 1256, 1156, 919, 751, 698, 607 cm⁻¹ MS (EI, 70 eV): *m*/*z* (%): 239 (12, [M⁺]), 196 (100), 167 (15), 134 (17), 120 (40), 105 (12), 92 (15), 77 (35). m.p.: 75-77°C (lit.: 81°C)

3,4-dihydronaphthalen-1(2*H*)-one (2t)³

A conical test tube was charged with $Fe_2(SO_4)_3$ (60 mg, 0.15 mmol, 5 mol%), SDS (43.3 mg, 0.15 mmol, 5 mol%), and 3 mL of water. Then 1,2,3,4-tetrahydronaphthalene (408.6 μ l, 396.3

mg, 3 mmol) was added followed by TBHP (1.94 mL, 15 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Yellow oil 114 mg (0.78 mmol, yield: 26%) Rf: 0.52 (in hexane:EtOAc = 4:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.22 (d, 1H, *J* = 8.06 Hz), 7.38-7.32 (m, 1H), 7.21-7.12 (m, 2H), 2.85 (t, 2H, *J* = 6.08 Hz), 2.54 (t, 2H, *J* = 6.55 Hz), 2.02 (q, 2H, *J* = 12.64 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 198.7, 144.9, 133.8, 133.0, 129.1, 127.5, 127.0, 39.6, 30.1, 23.7 ppm. v_{max} 2976, 2933, 1681, 1599, 1299, 1284, 762, 734, 553 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 146 (70, [M⁺]), 131 (15), 118 (100), 103 (2), 90 (70), 77 (5)

Anthracene-9,10-dione (2v)¹⁶

A conical test tube was charged with FeCl_3 (10.8 mg, 0.04 mmol, 2 mol%), SDS (11.5 mg, 0.04 mmol, 2 mol%), and 2 mL of water. Then 9,10-dihydroanthracene (360 mg, 2 mmol) was added followed by TBHP (2.58 mL, 20 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Off-white solid 445 mg (2.1 mmol, yield: 88%) Rf: 0.39 (in hexane:EtOAc = 3:1) ¹H NMR (250 MHz, CDCl₃): δ = 8.32 (s, 4H), 7.81 (s, 4H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 183.1, 134.1, 133.5, 127.2 ppm. v_{max} 1673, 1573, 1281, 1168, 935, 808, 691, 620 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 208 (100, [M⁺]), 180 (100), 152 (100), 126 (15), 76 (42). m.p. 279-281°C

9*H***-**xanthen-**9-**one $(2w)^3$

A conical test tube was charged with FeCl_3 (10.8 mg, 0.04 mmol, 2 mol%), SDS (11.5 mg, 0.04 mmol, 2 mol%), and 2 mL of water. Then 9*H*-xanthene (364 mg, 2 mmol) was added followed by TBHP (1.29 mL, 10 mmol). The reaction vessel was closed with rubber septa,

and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified with chromatography (hexane/EtOAc).

Off-white solid 380 mg (1.94 mmol, yield: 97%) Rf: 0.39 (in hexane:EtOAc = 3:1) ¹H NMR (250 MHz, CDCl₃): δ = 8.32 (d, 2H J = 7.74 Hz), 7.70 (t, 2H, J = 7.5 Hz), 7.46 (d, 2H J = 8.06 Hz), 7.35 (t, 2H J = 7.19 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 177.1, 156.0, 134.7, 126.6, 123.8, 121.7, 117.9 ppm. v_{max} 1653, 1615, 1478, 1454, 1329, 1144, 755, 670, 625 cm⁻¹ MS (EI, 70 eV): m/z (%): m.p. 174 °C (lit.): 172-174°C

Isochroman-1-one $(2x)^3$

A conical test tube was charged with FeCl₃ (40.5 mg, 0.15 mmol, 5 mol%), SDS (43.3 mg, 0.15 mmol, 5 mol%), and 3 mL of water. Then isochroman (377.3 μ l, 402.5 mg, 3 mmol) was added followed by TBHP (1.94 mL, 15 mmol). The reaction vessel was closed with rubber septa, and stirred for 10 min at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified with chromatography (hexane/EtOAc).

Colorless oil 123 mg (0.83 mmol, yield: 28%) Rf: 0.16 (in hexane:EtOAc = 3:1) ¹H NMR (250 MHz, DMSO- d_6): δ = 8.00 (d, 1H *J* = 7.58 Hz), 7.46 (t, 1H *J* = 7.50 Hz), 7.30 (t, 1H *J* = 7.424 Hz), 7.19 (d, 1H *J* = 7.58 Hz), 4.44 (t, 2H *J* = 6.00 Hz), 2.98 (t, 2H *J* = 6.00 Hz) ppm. ¹³C NMR (62.5 MHz, DMSO- d_6): δ = 163.4, 140.2, 133.6, 129.4, 127.6, 124.9, 67.1, 27.0 ppm. v_{max} 2900, 1715, 1392, 1292, 1240, 1118, 1089, 1027, 743, 693, 491. MS (EI, 70 eV): m/z (%): 148 (50, [M⁺]), 118 (100), 90 (85), 63 (20).

Isobenzofuran-1(3H)-one (2y)³

A conical test tube was charged with FeCl_3 (40.5 mg, 0.15 mmol, 5 mol%), SDS (43.3 mg, mmol, 5 mol%), and 3 mL of water. Then 1,3-dihydroisobenzofuran (330.7 µl, 360.5 mg, mmol) was added followed by TBHP (1.94 mL, 15 mmol). The reaction vessel was closed with rubber septa, and stirred for 10 min at 50°C. After cooling to room temperature, the

solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

White solid 133 mg (0.99 mmol, yield: 33%) Rf: 0.53 (in hexane:EtOAc = 3:1) ¹H NMR (250 MHz, DMSO-*d*₆): δ = 7.83-7.72 (m, 2H), 7.66-7.52 (m, 2H), 5.39 (s, 2H) ppm. ¹³C NMR (62.5 MHz, DMSO-*d*₆): δ = 170.64, 147.2, 134.1, 128.8, 124.8, 124.8, 122.9, 69.8 ppm. v_{max} 2916, 1745, 1708, 1466, 1437, 1366, 1216, 1048, 999, 737, 679, 472 cm⁻¹. MS (EI, 70 eV): *m/z* (%): 134 (50, [M⁺]), 105 (100), 77 (45), 51 (15). m.p. 72°C (lit.): 71-74°C

1-tosyl-2,3-dihydroquinolin-4(1H)-one (2z)¹⁷

A conical test tube was charged with $Fe_2(SO_4)_3$ (20 mg, 0.05 mmol, 5 mol%), SDS (14.4 mg, 0.05 mmol, 5 mol%), and 1 mL of water. Then 1-tosyl-1,2,3,4-tetrahydroquinoline (287.1 mg, 1 mmol) was added followed by TBHP (0.65 mL, 5 mmol). The reaction vessel was closed with rubber septa, and stirred for 8 hours at 50°C, then TBHP (0.13 ml, 1 mmol, 1 eq.) was added and the reaction mixture was stirred for further 16 hours (24 hours total reaction time). After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

White solid 90.1 mg (0.3 mmol, yield: 30%) Rf.: 0.72 (in hexane:EtOAc = 3:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.93 (d, 1H, *J* = 7.74 Hz), 7.85 (d, 1H, *J* = 8.37 Hz), 7.59-7.53 (m, 3H), 7.29-7.20 (m, 3H), 4.22 (t, 2H, *J* = 6.40 Hz), 2.37 (t, 2H, *J* = 6.24 Hz), 2.37 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 193.1, 145.0, 142.8, 137.2, 135.1, 130.5, 128.2, 127.3, 126.1, 126.0, 125.0, 46.6, 36.9, 22.0 ppm. v_{max} 3064, 2923, 1680, 1595, 1349, 1294, 1162, 1076, 922, 772, 728, 682, 575, 550, 539 cm⁻¹. MS (EI, 70 eV): *m/z* (%): 301 (10, [M⁺]), 155 (20), 146 (75), 128 (4), 117 (15), 104 (4), 91 (100), 77 (10), 65 (20). m.p.: 138-140°C

Methyl 2-oxo-2-phenylacetate (2aa)¹⁸

A conical test tube was charged with $Fe_2(SO_4)_3$ (20 mg, 0.1 mmol, 2.5 mol%), SDS (28.8 mg, 0.1 mmol, 5 mol%), and 2 mL of water. Then methyl 2-phenylacetate (285 µl, 300.3 mg, 2 mmol) was added followed by TBHP (1.29 mL, 10 mmol). The reaction vessel was closed with rubber septa, and stirred for 8 hours at 50°C, then TBHP (1.29 ml, 10 mmol, 5 eq.) was added and the reaction mixture was stirred for further 16 hours (24 hours total reaction time). After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

Colorless oil 264 mg (1.6 mmol, yield: 80%) Rf: 0.41 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 8.05 (dd, 2H J_1 = 7.11 Hz, J_2 = 1.42 Hz), 7.65 (t, 1H J = 7.5 Hz), 7.53-7.45 (m, 2H), 3.97 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 186.5, 164.0, 135.0, 132.2, 130.1, 128.8, 52.7 ppm. v_{max} 2956, 1737, 1689, 1204, 1172, 1003, 677 cm⁻¹ MS (EI, 70 eV): m/z (%): 164(2, [M⁺]), 105(100), 77(52), 51(20).

1-benzyl isatin (2bb)¹⁹

A conical test tube was charged with $Fe_2(SO_4)_3$ (5mg, 0,025 mmol, 5 mol%), SDS (1.8 mg, mmol, 5 mol%), and 0.266 mL of water. Then 1-benzylindole (52 mg, 0.25 mmol) was added followed by TBHP (0.484mL, 0.75mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified with chromatography (hexane/EtOAc).

Orange solid. 12.3 mg (0.05 mmol, yield: 21%, Purity 92%) Rf: 0.40 (in hexane:EtOAc = 3:1) ¹H NMR (250 MHz, CDCl₃): δ = 7.55 (d, 1H, *J* = 6.63 Hz), 7.41 (t, 1H, *J* = 7.82 Hz), 7.55 (d, 1H, *J* = 6.63 Hz), 7.28-7.19 (m, 5H), 7.02 (t, 1H, *J* = 7.66 Hz), 6.01 (d, 1H, *J* = 8.06 Hz), 4.86 (s, 2H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 183.6, 158.7, 151.1, 138.7, 134.9, 129.4, 127.8, 124.3, 118.1, 111.4, 44.4 ppm. v_{max} 2925, 1727, 1608, 1467, 1345, 1174, 1091, 1001, 852, 751, 691, 469 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 237 (35, [M⁺]), 207 (5), 180 (40), 146 (100), 104 (10), 91 (50), 77 (10). m.p.: 110-120°C (lit.): 133-135°C

OH

Benzoic acid (2cc)²⁰

A conical test tube was charged with $Fe_2(SO_4)_3$ (30mg, 0.075mmol, 5 mol%), SDS (43.3mg, mmol, 5 mol%), and 1.1 mL of water. Then 2-phenylacetonitrile (345 µl, 351 mg, 3 mmol) was added followed by TBHP (1.9 mL, 15 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

A conical test tube was charged with $Fe_2(SO_4)_3$ (20 mg, mmol, 5 mol%), SDS (28.8 mg, mmol, 5 mol%), and 0.710 mL of water. Then benzylalcohol (207 µl, 216 mg, 2 mmol) was added followed by TBHP (1.29 mL, 10 mmol). The reaction vessel was closed with rubber septa, and stirred for 24 hours at 50°C. After cooling to room temperature, the solution was washed with EtOAc, dried over magnesium sulfate, and concentrated. The crude product was purified by chromatography (hexane/EtOAc).

White solid 168 mg (1.38 mmol, yield: 46% from 2-phenylacetonitrile), 99.7 mg (0.82 mmol, yield: 41% from benzylalcohol) Rf: 0.32 (in hexane:EtOAc = 5:1) ¹H NMR (250 MHz, CDCl₃): δ = 12.71 (s, 1H), 8.16 (d, 1H, *J* = 7.42 Hz), 7.64 (t, 1H, *J* = 7.35 Hz), 7.50 (t, 1H, *J* = 7.50 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 173.1, 134.3, 130.7, 129.8, 128.9 ppm. v_{max} 3070, 2603, 2551, 1678, 1581, 1419, 1288, 1180, 930, 804, 704, 545 cm⁻¹ MS (EI, 70 eV): *m/z* (%): 122 (90, [M⁺]), 105 (100), 94 (5), 77 (80), 51 (40). m.p.: 121-123°C (lit.): 121-125°C

Methyl 7-iodo-9-oxo-9H-fluorene-4-carboxylate (2f)

Propiophenone (2j)⁸

3,4-dihydronaphthalen-1(2H)-one $(2t)^3$

9*H***-**xanthen-**9-**one $(2\mathbf{w})^3$

8.334 7.725 7.696 7.667 7.472 7.440 7.381 7.352 7.323

1-benzyl isatin (2bb)¹⁹

MS Spectras

Fluorene-9-one (2a)³

Abundance

m / z -->

2-iodo-9*H***-fluoren-9-one** (2b)⁴

2-bromo-9*H*-fluoren-9-one (2d)³

Abundance

m / z -->

2,7-dibromo-9*H***-fluoren-9-one** (2e) ^{5,6}

Abundance

Abundance

Methyl 7-iodo-9-oxo-9H-fluorene-4-carboxylate (2f)

2-(phenylethynyl)-9*H*-fluoren-9-one (2g)⁷

Abundance

m/z-->

(E)-methyl 3-(9-oxo-9*H*-fluoren-2-yl)acrylate (2h)

Acetophenone (2i)³

Abundance

Propiophenone (2j)⁸

Abundance

Butirophenone (2k)⁹

Abundance

Methyl 5-oxo-5-phenylpentanoate (21)¹⁰

Methyl 4-heptanoylbenzoate (2m)¹¹

1-(4-methoxyphenyl)ethanone (**2n**)¹²

Abundance

1-(thiophen-2-yl)ethanone (2p)¹³

Abundance

Abundance

m / z -->

2-benzoylphenyl acetate (2r)¹⁴

m / z -->

N-(2-benzoylphenyl)acetamide (2s)¹⁵

Abundance

m / z-->

70

3,4-dihydronaphthalen-1(2*H*)-one (2t)³

Abundance

m/z-->

Anthracene-9,10-dione (2v)¹⁶

Abundance

9H-xanthen-9-one $(2w)^3$

Abundance

m / z -->

Isochroman-1-one $(2x)^3$

Abundance

m / z -->

Isobenzofuran-1(3*H*)-one (2y)³

Abundance

m / z -->

1-tosyl-2,3-dihydroquinolin-4(1*H***)-one (2x)¹⁷**

Abundance

m / z -->

Methyl 2-oxo-2-phenylacetate (2aa)¹⁸

Abundance

m / z -->

1-benzyl isatin (2bb)¹⁹

Abundance

m / z -->

Benzoic acid (2cc)²⁰

Abundance

m / z -->

References

- ¹Wu, Y.-T.; Bandera, D.; Maag, R.; Linden, A.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc., 2008, 130, 10729 10739
- ² Zhang, W.; Cao, X.-Y.; Zi, H.; Pei, J., Org. Lett., **2005**, 7, 959 962
- ³ Kumar, R. A.; Maheswari, C. U.; Ghantasala, S.; Jyothi, C.; Reddy, K. R.; *Adv. Synth. Catal.*, **2011**, *353*, 401-410. ⁴ ELI LILLY AND COMPANY Patent: WO2005/40110 A1, **2005**.
- ⁵ AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH; CHEN, Zhikuan; LIU, Qinde; SINGH, Samarendra P.; ZEN, Achmad Patent: WO2010/96019 A1, 2010.
- Jiang, W.-F.; Wang, H.-L.; Wang, A.-G.; Li, Z.-Q.; Synth. Commun., 2008, 38, 1888-1895.
- ⁷ Sinkeldam, Renatus W.; Tor, Yitzhak; Organic and Biomolecular Chemistry, 2007, 16, 2523 2528

⁸ Shriner, R. L.; Turner, T. A. Journal of the American Chemical Society **1930**, *52*, 1267-1269.

- ⁹ Gilman, Henry; Meals, R. N. Journal of Organic Chemistry **1943**, 8 126-146.
- ¹⁰ Miura, Masahiro; Nojima, Masatomo; Kusabayashi, Shigekazu. J. Chem. Soc., Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) 1980, 12, 2909-2013.
- 11 Takezawa, Akinori; Yamaguchi, Kenji; Ohmura, Toshimichi; Yamamoto, Yasunori; Miyaura, Norio. Synlett 2002, 10, 1733-1735.
- ¹² Berini, C.; Winkelmann, O. H.; Vicic, D. A.; Navarro, O.; Otten, J.; Chem. Eur. J. **2010**, 16, 6857-6860.
- ¹³ Wang, X.; Wang, D. Z.; *Tetrahedron*, **2011**, 67, 3406 3411.
- ¹⁴ Fuerstner, A.; Jumbam, D. N.; *Tetrahedron*, **1992**, 48, 5991-6010.
- ¹⁵ Li, C.; Wang, L.; Li, P.; Zhou, W. *Chem. Eur. J.*, **2011**, *17*, 10208-10212.

¹⁶ Branchi, B.; Balzani, V.; Ceroni, P.; Kuchenbrandt, M. C.; Klaerner, F.-G.; Blaeser, D.; Boese, R.; J. Org. Chem. 2008, 73, 5839-5851.

- ¹⁷ Catino, A. J.; Nichols, J. M.; Choi, H.; Gottipamula, S.; Doyle, M. P.; Org. Lett., **2005**, *7*, 5167-5170.
- ¹⁸ Babu, N. S.; Chen, C.-T.; Salunke, S. B.; *Adv. Synth. Catal.*, **2011**, *353*, 1234-1240.
- ¹⁹ Jensen, T.; Madsen, R.; J. Org. Chem., 2009, 74, 3990 3992.
- ²⁰ Alagiri, K.; Prabhu, Kandikere R.; *Tetrahedron*, **2011**, 67, 8544-8551.