Supporting Materials

Reduction of Mn⁴⁺ to Mn²⁺ in CaAl₁₂O₁₉ by co-doping charge compensators to

obtain tunable photoluminescence

Jing Lu,^a Yuexiao Pan*^a, Jiaguo Wang^a, Xi'an Chen^a, Shaoming Huang^a, Guokui Liu^{b*}

^aNanomaterials and Chemistry Key Laboratory, Faculty of Chemistry and Materials

Engineering, Wenzhou University, Zhejiang Province, Wenzhou 325027, P. R. China

^bChemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439

Figure S1. XRD patterns of (a) CaAl₁₂O₁₉:0.5%Mn and (b) CaAl₁₂O₁₉:0.5%Mn,3%Bi³⁺ sintered at 1500 °C for 3 h in air. XRD data were collected with an X-ray diffractometer (D8 Advance, Bruker, Germany) with graphite monochromatized Cu K α radiation (λ =0.15406 nm). Identification of phases was made using standard JCPDS files.

Figure S2. Emission spectra of $CaAl_{12}O_{19}$:Mn⁴⁺ with different doping concentration at (a) 0.5, (b) 0.01, (c) 0.005, (d) 0.001, (e) 0.0001 mol% of Al^{3+} . The emission spectra were measured on a computer-controlled Triax 320 fluorescence spectrofluorimeter (Jobin-Yvon Inc., Longjumeau, France) with 150 W xenon lamp as the excitation source.

Figure S3. Excitation spectra of CAO:0.001%Mn⁴⁺ monitored at (a) 655 nm and (b) 687 nm. The excitation spectra were measured on a computer-controlled Triax 320 fluorescence spectrofluorimeter (Jobin-Yvon Inc., Longjumeau, France).

Figure S4. Emission spectrum of CaAl₁₂O₁₉:0.5%Mn,3%Sm³⁺ sintered at 1500 °C for 3 h in air. Measurement was performed on fluorescence spectrophotometer (Fluoro Max-4 Horiba Jobin Yvon Holland) at room temperature.

The emission spectrum of $CaAl_{12}O_{19}:0.5\%Mn,3\%Sm^{3+}$ is composed of emission bands from Sm^{3+} at 561 nm and 594 nm, Mn^{2+} at 517 nm , and Mn^{4+} at 655 nm.

Figure S5. Emission spectrum of CaAl₁₂O₁₉:0.5%Mn,3%Nd³⁺ sintered at 1500 °C for 3 h in air. Measurement was performed on fluorescence spectrophotometer (Fluoro Max-4 Horiba Jobin Yvon Holland) at room temperature.

The emission spectrum of $CaAl_{12}O_{19}:0.5\%Mn,3\%Nd^{3+}$ is composed of green (from Mn^{2+}) at 517 nm and red (from Mn^{4+}) emissions at 655 nm.

Figure S6. Emission spectrum of CaAl₁₂O₁₉:0.5%Mn,3%Tm³⁺ sintered at 1500 °C for 3 h in air. Measurement was performed on fluorescence spectrophotometer (Fluoro Max-4 Horiba Jobin Yvon Holland) at room temperature.

The emission spectrum of CaAl₁₂O₁₉:0.5%Mn,3%Tm³⁺ is composed of blue emission (from Tm³⁺) at 454 nm, green emission (from Mn^{2+}) at 517 nm , and red emission (from Mn^{4+}) at 655 nm.

Figure S7. Emission spectra ($\lambda ex = 395 \text{ nm}$) of the phosphor (a) CaAl₁₂O₁₉:3%Dy³⁺ and (b) CaAl₁₂O₁₉:0.5%Mn⁴⁺,3%Dy³⁺. Inset: CIE chromaticity diagrams of emission spectra of (a) CaAl₁₂O₁₉:3%Dy³⁺ and (b) CaAl₁₂O₁₉:0.5%Mn⁴⁺,3% Dy³⁺.

The emission spectra of CAO:3% Dy^{3+} shows two characteristic emission bands of Dy^{3+} , a blue band of magnetic dipole transition (${}^{4}F_{9/2} - {}^{6}H_{15/2}$) and a yellow band of electric dipole transition (${}^{4}F_{9/2} - {}^{6}H_{11/2}$) as shown in Fig. 7a. In this phosphor, the electric dipole and magnetic dipole transitions have almost equal intensities because that Dy^{3+} at the Ca²⁺ site has a high-symmetry in the 12-fold coordinated cuboctahedron lattice structure. Both green emission of Mn²⁺ and red emission of Mn⁴⁺ are observed in the PL spectrum of CAO:Mn co-doped with 3% Dy^{3+} .The CIE chromaticity coordinates of CAO:3% Dy^{3+} and CAO:0.5%Mn, 3% Dy^{3+} are depicted by the inset in Fig. 7. While the CIE of both phosphors fill into the white region, but the co-doped phosphor has a stronger red component, therefore, is more attractive for creating warm white light.