Electronic Supporting Information of the Manuscript:

Proline-Coated Gold Nanoparticle as a Highly Efficient Nanocatalyst for the Enantioselective Direct Aldol Reaction in Water.

By: Noureddine Khiar,* ^a Raquel Navas,^a Eleonora Elhalem,^a Victoria Valdívia,^{a,b} Inmaculada Fernández.*^b

Contribution from: ^aInstituto de Investigaciones Químicas, C.S.I.C-Universidad de Sevilla, c/. Américo Vespucio, 49., Isla de la Cartuja, 41092 Sevilla, Spain. ^bDepartamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain.

Table of contents

тос		2
General Methods		3
Synthesis of 14-azido-3,6,9,12-tetraoxatetradecanoic acid (2).		4
Synthesis of <i>tert</i> -Butyl <i>N-tert</i> -Butoxycarbonyl- 4-hydroxy-L-proline (3)		5
Synthesis of tert-Butyl 4-(14-azido-3,6,9,12-tetraoxatetradecanoyl) -N-Boc-L-proline (4)		5
Synthesis of <i>tert</i> -Butyl 4-(14-amino-3,6,9,12-tetraoxatetradecanoyl) -N-Boc-L-proline (5)		6
Synthesis of 11-trytilsulfenylundecanoic acid (6)		6
Synthesis of tert-Butyl 4-[N-(11-trytilsulfenyl)undecanoyl) -14-amino-3,6,9,12-tetraoxatetradecanoyl]-N-Boc-L-proline (7).		7
Synthesis of 4-[N-(11-mercaptoundecanoyl) -14-amino-3,6,9,12-tetraoxatetradecanoyl]-L-proline (8).		7
Synthesis of pentanethiolate stabilized gold nanoparticles (9)		8
Sythesis of proline-coated gold nanoparticles (I)		8
Direct aldol reaction using nanocatalyst I		9
HPLC chromatogram of 12		10
Collection of Spectra	11-20	

General Methods

If not indicated, all reactions were run under an atmosphere of dry argon using oven-dried glassware and freshly distilled and dried solvents. Toluene, CH₂Cl₂ and diethyl ether were dried on an Innovative technology drying system. The precursor chemicals were obtained from Sigma-Aldrich and used without further purification. TLC was performed on Silica Gel GF254 (Merck) with detection by charring with phosphomolybdic acid/EtOH. For flash chromatography, silica Gel (Merck 230-400 mesh) was used. Chromatographic columns were eluted with positive air pressure and eluents are given as volume to volume ratios (v/v). NMR spectra were recorded with a Bruker Avance DPX400 (¹H, 400 MHz) and Bruker Avance DRX500 (¹H, 500 MHz), spectrometers. Chemical shifts are reported in ppm, and coupling constants are reported in Hz. Routine spectra were referenced to the residual proton or carbon signals of the solvent. High Resolution mass spectra (HRMS) were recorded in "Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla" with a Kratos MS-80RFA 241-MC apparatus. Optical rotations were determined with a Perkin-Elmer 341 polarimeter. Elemental analyses were measured in a LECO TruSpec[®] CHNS-932 apparatus. Melting points were measured in STUART SMP3 apparatus in open end capillary tubes. Enantiomeric excesses were measured on a Waters alliance 2695 and Agilent Technologies 1200 series apparatus with stationary chiral phase using Chiralpack AD column. TEM images of the gold nanoparticles were recorded in "Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla" using a Philips CM-200 electronic microscope.

14-azido-3,6,9,12-tetraoxatetradecanoic acid (2).

Synthesis of the hydrophilic spacer **2**, has been done in three steps following the scheme:

To a solution of tetraethylene glycol **1** (22.7 mL, 140 mmol) and Et₃N (15 mL) in THF (100 mL) at 0°C was added dropwise a solution of methanesulfonyl chloride (10.8 mL, 140 mmol). The reaction mixture was then allowed to warm to room temperature and stirred vigorously overnight. The mixture was diluted with CH_2Cl_2 (250 mL) and washed with saturated NH₄Cl aqueous solution (50 mL) and brine (20 mL). The organic solution was dried over Na₂SO₄ and concentrated in vacuum to give the crude product. The oily residue was purified by flash column chromatography, eluting with dichlorometane/methanol (20:1) to give 12.9 g of the mesylated compound **1a** as an oil (37% yield): $R_f = 0.5$ in dichlorometane/methanol (9:1). ¹H NMR (500 MHz, CDCl₃) δ : 4.41- 4.35 (m, 2H), 3.81-3.60 (m, 14H), 3.09 (s, 3H), 2.97 (s, 1H). ¹³C NMR (125.6 MHz, CDCl₃) δ : 72.5, 70.4, 70.3, 70.1, 69.4, 68.9, 61.4, 37.4. HRMS Calcd. for $C_9H_{20}O_7SNa [M+Na]^+$: m/z 273.1008. Found: 273.0997.

A mixture of mesylated compound **1a** (9.1 g, 33.4 mmol) and sodium azide **(**2.4 g., 36.8 mmol) in ethanol (50 mL) was heated at reflux overnight, then cooled to room temperature and concentrated in vacuo. The residue was diluted with ether (250 mL), washed with brine (50 mL), and dried over Na₂SO₄. The solvent was removed under vacuum to yield the crude product, which was purified by flash column chromatography, eluting with a gradient of hexane/ethyl acetate (1:1) to give 6.4 g of the azide **1b** as an oil (97% yield): $R_f = 0.18$ in hexane/ethyl acetate (1:1). ¹H NMR (500 MHz, CDCl₃) δ : 3.58 (t, 2H, *J* = 4.8 Hz), 3.57-3.51 (m, 10H), 3.46 (t, 2H, *J* = 4.8 Hz), 3.26 (t, 2H, *J* = 4.8 Hz), 3.10 (brs, 1H). ¹³C NMR (125.7 MHz, CDCl₃) δ : 72.5, 70.6, 70.5, 70.4, 70.2, 69.9, 61.5, 50.5. HRMS calcd for C₈H₁₇N₃O₄Na [M+Na]⁺: m/z 220.1297. Found: 220.1288.

To a suspension of NaH (660 mg, 27.40 mmol) in dry THF (22 mL) under argon, was added dropwise during 30 min a solution of **1b** (1.00 g, 4.60 mmol) in THF (23 mL). Once the addition finished the mixture was stirred another 1 h, then a solution of acetic acid bromide (1.30 g, 9.20 mmol) in THF (23 mL) was added dropwise during 1 h and stirred overnight. The excess of NaH was destroyed by a slow addition of water, THF was evaporated at vacuum and the mixture washed with HCl 1M (50 mL) and extracted with CH_2Cl_2 . The organic layer was dried over Na₂SO₄, and the solvent evaporated. The crude mixture was purified by column chromatography ($CH_2Cl_2/MeOH$, 9:1) affording **2** (980 mg, 77%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ : 7.42 (bs, 1H), 4.16 (s, 2H), 3.76-3.62 (m, 14H), 3.40 (t, 2H, ³ $J_{H,H}$ = 5.2). ¹³C NMR (125.7 MHz, CDCl₃) δ : 172.8, 71.1, 70.6, 70.5, 70.4, 70.3, 70.2, 70.0, 68.8, 50.6. HRMS: Calcd. for $C_{10}H_{19}N_3ONa$ [M+Na]⁺: 300.1172 Found: 300.1157.

tert-Butyl N-tert-Butoxycarbonyl-4-hydroxy-L-proline (3)

To a solution of *N*-Boc-4-hydroxy-L-proline (4 g, 17.29 mmol), triethylbenzylamonium chloride (3.9 g, 17.29 mmol), and K₂CO₃ (40g, 449 mmol) in DMF (80 mL) was added 2-bromo-2-methylpropane (19 mL, 172.9 mmol), and the reaction heated (60°C) under reflux for 12 hours. The solvent was evaporated, added water and extracted with ether (3 x 200 mL). The organic layer was dried over Na₂SO₄, and the solvent evaporated. The crude mixture was purified by column chromatography (AcOEt : Hex, 1:1) affording **3** (2.4 g, 49 %) as a colourless oil .[α]_D²⁰: -56.6 (*c*. 1, CHCl₃).¹H NMR (500 MHz , CDCl₃) δ : 4.45 (s, 1H), 4.32-4.25 (m, 1H), 3.60 (m, 1H), 3.43-3.41 (m, 1H), 2.31-2.23 (m, 1H), 2.04-2.00 (m, 1H), 1.46 (s, 9H), 1.37 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ : 172.2, 154.2, 81.2, 80.2, 69.2, 58.5, 54.7, 39.2, 28.3, 28.0. HRMS: Calcd for C₁₄H₂₅NO₅: [M + Na] 310.1630 Found: 310.1639 (2.8 ppm).

tert-Butyl 4-(14-azido-3,6,9,12-tetraoxatetradecanoyl)-N-Boc-L-proline (4)

Boc To a solution of **2** (900 mg, 3.86 mmol) and diisopropylcarbodiimide (488.39 mg, 3.87 mmol) in CH_2Cl_2 (45 mL), a solution of **3** (1.1 g, 3.86 mmol) and DMAP (cat.) in CH_2Cl_2 (40 mL) was canulated and stirred for 6 hours. The mixture was nuetralized with 1M HCl and extracted with CH_2Cl_2 . The organic layer was dried over Na_2SO_4 , and the solvent evaporated. The crude mixture was purified by column chromatography (AcOEt : Hex, 4 : 1) affording **4** (1.5 g, 71 %) as a yellow oil. ¹H NMR (500 MHz , $CDCl_3$) δ : 5.34 (s, 1H), 4.30-4.21 (m, 1H), 4.15 (s, 2H), 3.73-3.67 (m, 15H), 3.54-3.52 (m, 1H),

3.40-3.38 (m, 2H), 2.43-2.39 (m, 1H), 2.23-2.17(m, 1H), 1.48 (s, 9H), 1.45 (s, 9H). 13 C NMR (125 MHz, CDCl₃) δ : 171.4, 170.0, 154.0, 81.4, 80.2, 72.3, 70.9, 70.7, 70.6, 70.1, 70.0, 68.5, 58.8, 58.4, 58.3, 57.0, 51.8, 50.7, 28.5, 28.3, 28.0, 27.9 ppm. HRMS: Calcd. for C₂₄H₄₂N₄O₁₀Na [M+Na] 569.2799. Found 569.2810 (2.5 ppm).

tert-Butyl 4-(14-amino-3,6,9,12-tetraoxatetradecanoyl)-N-Boc-L-proline (5)

mmol), Pd (100 mg) and CH_2CI_2 (20 mL) was added and hydrogenated at 1 atm of H_2 for 12 hours. The mixture was filtered through Celite and the crude was purified by column chromatography (CI_2CH_2 : MeOH, from 15 : 1 to 5 :1) affording **5** (440 mg, 47 %) as a yellow oil. ¹H NMR (500 MHz, CDCI₃) δ : 5.26 (s, 1H), 4.22-4.07 (m, 3H), 3.81 (t, 2H, *J* = 5 Hz), 3.66-3.44 (m, 14H), 3.22-3.15 (m, 2H), 2.35-2.33 (m, 1H), 2.13-2.08 (m, 1H), 1.39 (s, 9H), 1.36 (s, 9H). ¹³C NMR (125 MHz, CDCI₃) δ : 171.4, 170.4, 153.9, 81.4, 80.3, 73.7, 72.8, 70.5, 70.0, 69.9, 69.7, 69.5, 68.3, 66.6, 58.2, 51.7, 39.8, 36.4, 28.2, 27.9. HRMS: Calcd. for C₂₄H₄₄N₂O₁₀Na [M+Na] 543.2894 Found 543.2897 (0.6 ppm).

11-tritylsulfenylundecanoic acid (6)

To a solution of 11-mercaptoundecanoic acid (2g, 9.09 mmol) and DIPEA (4.8 mL, 27.42 mmol) in toluene (60 mL), trityl chloride (5.12 g, 18.41

mmol) was added and stirred for 24 hours. The solvent was evaporated and the crude was purified by column chromatography (AcOEt : Hex, 1:9) affording **6** (3.6 g, 90%) as a white solid. ¹H NMR (300 MHz , CDCl₃) δ : 7.48-7.34 (m, 6H), 7.31-7.21 (m, 9H), 2.38 (t, 2H, *J* = 8.2 Hz), 2.18 (t, 2H, *J* = 7.5 Hz), 1.71-1.61 (m, 2H), 1.47-1.22 (m, 12H), 0.95-0.88 (m, 2H).

tert-Butyl 4-[N-(11-tritylsulfenyl)undecanoyl)-14-amino-3,6,9,12-tetraoxatetradecanoyl]-N-Boc-L-proline (7).

To a solution of **5** (796 mg, 1.53 mmol) and DIPEA (533 µL, 3.06 mmol) in DMF (10 mL/mmol amina), a solution of **6** (774 mg, 1.68 mmol), TBTU (539.4 mg, 1.68 mmol) and DIPEA (266 µL, 3.06 mmol) in DMF was added and stirred overnight. DMF was evaporated and the mixture was neutralized with saturated NaHCO₃ aq. solution and extracted with CH₂Cl₂. The organic layer was washed with brine and dried over Na₂SO₄. The crude was purified by column chromatography (AcOEt : Hex, 1 : 1) affording **7** (1.4 g, 95%) as a colorless oil. [α]_D²⁰: -12.8 (c. 1.6, CHCl₃). ¹H NMR (500 MHz , CDCl₃) δ : 7.38-7.37 (m, 6H), 7.25-7.22 (m, 6H), 7.17-7.14 (m, 3H), 6.29 (s, 1H), 5.3 (s, 1H), 4.25 (dt, 1H, *J* = 7.5 and 24.0 Hz), 4.11 (s, 2H), 3.72-3.62 (m, 14H), 3.54 (t, 2H, *J* = 5.0 Hz), 3.44-3.43 (m, 3H) 2.51-2.38 (m, 1H), 2.22-2.11 (m, 5H), 1.61 (m, 2H), 1.47 (s, 9H), 1.44 (s, 9H), 1.40 (m, 2H), 1.25-1.20 (m, 12H). ¹³C NMR (125 MHz, CDCl₃) δ : 173.3, 171,4, 169.9, 153.7, 145.1, 129.6, 127.8, 126.5, 81.5, 80.4, 80.2, 73.3, 72.4, 70.9, 70.6, 70.5, 70.2, 69.9, 68.5, 66.3, 58.3, 51.9, 39.1, 36.6, 35.4, 32.0. HRMS: Calcd. for C₅₄H₇₈N₂O₁₁SNa [M+Na] 985.5220. Found: 985.5231 (1.3 ppm)

4-[N-(11-mercaptoundecanoyl)-14-amino-3,6,9,12-tetraoxatetradecanoyl]-L-proline (8).

To a solution of **7** (788 mg, 0.81 mmol) in CH_2Cl_2 (20 mL) under argon atmosphere, TFA (2.33 mL, 32.4 mmol) and Et_3SiH (386 µL, 2.43 mmol) were added and stirred for 24. The mixture was stopped by adding water (7 mL), extracted with CH_2Cl_2 and dried over Na_2SO_4 . The crude was purified by column chromatography (CH_2Cl_2 : MeOH, 5 : 1) affording **8** (80 mg, 15 % yield) as a colorless oil. ¹H NMR (500 MHz , $CDCl_3$) δ : 6.35 (bs, 1H), 5.40 (bs, 1H), 4.28 (s, 1H), 4.28-4.13 (m, 2H), 3.79-3.43 (m, 16H), 2.54-2.50 (m, 2H), 2.46-2.44 (m, 1H), 2.35-2.34 (m, 1H), 2.19-2.16 (m, 2H) 1.69-1.59 (m, 4H), 1.38-1.26 (m, 12H). ¹³C NMR (125 MHz, $CDCl_3$) δ : 173.4, 172.5, 169.9, 82.21, 73.6, 70.9, 70.4, 70.4, 70.4, 70.4, 70.1, 69.9, 68.3, 60.1, 50.4, 41.7, 39.2, 39.1,

36.6, 35.1, 34.0, 31.0, 29.8, 29.4, 29.4, 29.4, 29.3, 29.3, 29.3, 29.3, 29.1, 29.0, 28.4, 28.3, 28.3, 25.7, 24.6, 22.9.

Synthesis of pentanethiolate stabilized gold nanoparticles (9)

To a solution of HAuCl₄ (326 mg, 0.82 mmol) in water (30 mL), a solution of TOAB (496 mg, 0.90 mmol) in toluene (20 mL) was added and stirred for 5 min. Then, pentanothiol (0.165 mmol) was added and stirred for 15 min. After a freshly NaBH₄ (343.30 mg, 9.07 mmol) aqueous solution (20 mL) was added, the reaction became dark. After stirring for 5 hours, the organic layer was separated and the solvent evaporated to 5 mL. The particles were precipitated by adding ethanol (40 mL) and put in the fridge for 12 hours. The black solid nanoparticles were filtered and washed three times with EtOH. The crude was dissolved in toluene and EtOH was added and put in the fridge again. The process was repeated for three times, affording NPs-C5 as a black solid.¹H NMR (500 MHz , CDCl₃) δ : 1.3 (bs, 5H), 0.8 (bs, 6H). Anal. Calc. for (C₅H₁₁S)₉₇Au₂₅₀: C, 9.83; H, 1.82; S, 5.25. Found: C, 9.52; H, 2.00; S, 5.51.

Sythesis of proline-coated gold nanoparticles (I)

To a solution of **9** (20 mg) in CH_2Cl_2 (1.5 mL), a solution of **8** (35 mg) in CH_2Cl_2 (1.5 mL) was added and stirred for 48 hours. The solvent was evaporated and the crude was dissolved in water. The proline functionalized nanoparticles were purified by dialysis (10.000 MWCO, SnakeSkin) for 48 hours. The solution was lyophilized affording I (44 mg) as a black solid. Anal. Calc. for $(C_{24}H_{43}N_2O_8S)_{92}Au_{250}$: C. 27.48, H. 4.30, S. 3.00. found C. 27.45%, H. 4.39%, S. 2.62%.

Direct aldol reaction. (2S)-2-[(1R)-1-Hydroxy-1-(4-nitrophenyl)methyl]cyclohexanone. (12)

OH O cyclo in wa o₂N

To a suspension of *p*-nitrobenzaldehyde (65 mg, 0.44 mmoles) in cyclohexanone (207 μ L, 1.9 mmol), a solution of I (24 mg, 2.5 mol%) in water (600 μ L) was added and stirred for 48 hours. Then the product was extracted with CH₂Cl₂ and the nanoparticles I remained

in water were put in reaction again. The organic layer was dried over Na₂SO₄ and the crude was purified by column chromatography (AcOEt/Hex, 1:3) affording **12** as a colorless oil, and the enantiomeric excess was determined by HPLC: Chiracel AD, 1 mL/min, Hexanes : 2-propanol, 92:8; 30°C, t_{Rminor} = 31.14 min, **(S)**, t_{Rmayor} = 40.6 min, **(R)**. Spectroscopy data of mayor isomer *anti* 2*S*,1'*R*. ¹H NMR (500 MHz , CDCl₃) δ : 8.23 (d, 2H, *J* = 8.5 Hz), 7.53 (d, 2H, *J* = 8.5 Hz), 4.92 (d, 1H, *J* = 8.5 Hz), 4.10 (bs, 1H), 2.64-2.59 (m, 1H), 2.42-2.36 (m, 1H), 2.16-2.1 (m, 1H), 1.71-1.57 (m, 4H), 1.44-1-22 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ : 148.4, 147.6, 127.9, 123.6, 57.2, 42.7, 30.8, 27.6, 24.7.

2nd cycle

3rd cycle

TEM image of NPs-C5

¹³C-NMR (125MHz, CDCl₃)

180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 fl(ppm)

7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1. f1[ppm]

¹³C-NMR (125MHz, CDCl₃)

¹H-NMR (500MHz, CDCl₃)

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

¹H-NMR (500MHz, D₂O)

¹³C-NMR (125MHz, CDCl₃)

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>