Synthesis of polyhalo 2-aryl-4-aminoquinazolines and 3-aminoindazoles as anticancer agents

Sheng-Jiao Yan^{a,1}, Ying Dong^{a,1}, Qiong Peng^b, Yin-Xian Fan^b, Ji-Hong Zhang^{b,*}, Jun Lin^{a,*}

^a Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China

^b College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650224, PR China

Supporting Information

Table of Contents

General Information	
General Procedure for the Preparation of Polyhalo 2-Aryl-4-aminoquinazolines 3	
Spectroscopic Data of Polyhalo 2-Aryl-4-aminoquinazolines 3	
General Procedure for the Preparation of Polyhalo 3-Aminoindazoles 5 and 7	9
Spectroscopic Data of Polyhalo 3-Aminoindazoles 5 and 7	9
¹ H NMR and ¹³ C NMR Spectra for Polyhalo 2-Aryl-4-aminoquinazolines 3	
Figure 1. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3a	
Figure 2. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3a	
Figure 3. ¹⁹ F NMR (470 MHz, DMSO- d_6) spectra of compound 3a	14
Figure 4. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3b	14
Figure 5. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3b	
Figure 6. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3c	
Figure 7. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3c	
Figure 8. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3d	
Figure 9. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	
Figure 10. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3e	
Figure 11. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3e	
Figure 12. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3f	
Figure 13. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3f	
Figure 14. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3g	
Figure 15. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3g	
Figure 16. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3h	
Figure 17. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3h	
Figure 18. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3i	21
Figure 19. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3i	
Figure 20. ¹ H NMR (500 MHz, CDCl ₃) spectra of compound 3j	

Figure 21. ¹³ C NMR (125 MHz, CDCl ₃) spectra of compound 3j	
Figure 22. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3k	
Figure 23. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3k	
Figure 24. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 31	
Figure 25. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 31	
Figure 26. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3m	
Figure 27. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3m	
Figure 28. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3n	
Figure 29. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3n	
Figure 30. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5a	
Figure 31. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5a	
Figure 32. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5b	
Figure 33. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5b	
Figure 34. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 5 c	
Figure 35. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 5c	
Figure 36. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7a	
Figure 37. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 7a	
Figure 38. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7b	
Figure 39. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 7b	
Figure 40. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7c	
Figure 41. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 7c	
Figure 42. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7d	
Figure 43. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 7d	
Figure 44. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7e	
Figure 45. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 7e	
Figure 46. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7f	
Figure 47. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 7f	
Figure 48. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 7g	
Figure 49. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 7g	

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, and deuterated DMSO-*d*₆ was used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agllent LC/Msd TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh). Compounds 1~2 were purchased from Aldrich Corporation Limited.

General Procedure for the Preparation of Polyhalo 2-Aryl-4-aminoquinazolines 3

A 25 mL round-bottom flask was charged with isophthalonitrile derivatives **1** (2 mmol), amidine hydrochlorides **2** (2 mmol) and DMSO (10 mL), then the solution was added to K_2CO_3 (6 mmol), and the mixture was heated 90 °C. The resulting solution was stirred for 2–8 h until the isophthalonitrile derivatives **1** was completely consumed. The reaction mixture was poured into 25 mL of water and filtered to obtain the crude products, which were purified by column chromatography (petroleum ether/EtOAc = 5:1) to afford product **3** with 70–93% yield. The products were further identified by FTIR, NMR and HRMS, being in good agreement with the assigned structures.

Spectroscopic Data of Polyhalo 2-Aryl-4-aminoquinazolines 3

4-Amino-5,7,8-trifluoro-2-(4-(trifluoromethyl)phenyl)quinazoline-6-carbonitrile (3a)

Slight yellow solid, mp: 224–225°C. IR (KBr): 3494, 3388, 2243, 1639, 1554, 1464, 1317, 1134, 930 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): δ 7.85 (d, J = 8.3 Hz, 2H, ArH), 8.16 (br, 1H, NH₂), 8.48 (d, J = 8.3 Hz, 2H, PhH), 8.90 (br, 1H, NH₂). ¹³C NMR (125 MHz, DMSO- d_6): δ 162.4, 159.3, 158.0 (d, J = 267.5 Hz), 150.5, 146.3, 141.6, 140.5, 131.3–131.8 (m), 129.3, 125.7, 123.4, 109.3, 101.1 (d, J = 11.3 Hz), 87.6 (d, J = 18.8 Hz). ¹⁹F NMR (470 MHz, DMSO- d_6): δ -61.3 (s, 3F), -103.4 (s, 1F), -129.2 (d, J = 18.8 Hz, 1F), -153.3 (d, J = 14.1 Hz, 1F). HRMS (TOF ES⁻): m/z calcd for C₁₆H₅F₆N₄ [(M-H⁺)], 367.0424; found, 367.0427.

4-Amino-8-chloro-5,7-difluoro-2-(4-(trifluoromethyl)phenyl)quinazoline-6-carbonitrile (3b)

Slight yellow solid, mp: 220–221°C. IR (KBr): 3503, 3401, 2239, 1631, 1554, 1444, 1321, 1134, 738 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): δ 7.87 (d, J = 7.3 Hz, 2H, PhH), 8.03 (br, 1H, NH₂), 8.52 (d, J = 7.3 Hz, 2H, PhH), 8.93 (br, 1H, NH₂). ¹³C NMR (125 MHz, DMSO- d_6): δ 162.4 (d, J = 50.0 Hz), 160.0, 159.2, 157.1, 152.3, 140.6, 131.8 (t, J = 31.3 Hz), 129.3, 127.7, 127.7, 125.7, 123.4, 109.4, 101.3, 88.2. HRMS (TOF ES⁻): m/z calcd for C₁₆H₅ClF₅N₄ [(M-H⁺)], 383.0128; found, 383.0130.

4-Amino-8-chloro-5,7-difluoro-2-(pyridin-4-yl)quinazoline-6-carbonitrile (3c)

Slight yellow solid, mp: 275–276°C. IR (KBr): 3447, 2922, 2235, 1625, 1531, 1452, 1337, 1207, 738 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.27 (d, *J* = 20.3 Hz, 2H, NH₂), 8.82 (s, 2H,

PhH), 9.06 (s, 2H, PhH). ¹³C NMR (125 MHz, DMSO- d_6): δ 162.4 (d, J = 27.5 Hz), 160.3, 159.4, 157.4, 152.4, 150.7, 144.4, 128.4, 122.5, 109.5, 101.7 (d, J = 11.25 Hz), 88.7. HRMS (TOF ES⁻): m/z calcd for C₁₄H₅ClF₂N₅ [(M-H⁺)], 316.0207; found, 316.0210.

4-Amino-2-(4-chlorophenyl)-5,7,8-trifluoroquinazoline-6-carbonitrile (3d)

White solid, mp: 235–236°C. IR (KBr): 3457, 3403, 2239, 1623, 1547, 1461, 1349, 1092, 747 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.57 (s, 2H, PhH), 8.35(s, 2H, PhH), 8.00 (t, *J* = 2.25 Hz, 2H, NH₂). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 163.0, 159.4, 157.1, 150.7, 146.6, 141.6, 137.1, 135.8, 130.6 129.0, 109.5, 101.1, 86.9. ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ -103.5 (d, *J* = 14.1 Hz, 1F), -129.5 (d, *J* = 18.8 Hz, 1F), -153.7 (t, *J* = 18.8 Hz, 1F). HRMS (TOF ES⁻): *m/z* calcd for C₁₅H₅ClF₃N₄ [(M-H⁺)], 333.0160; found, 333.0157.

4-Amino-8-chloro-2-(4-chlorophenyl)-5,7-difluoroquinazoline-6-carbonitrile (3e)

Slight yellow solid, mp: 240–241°C. IR (KBr): 3467, 3397, 2231, 1618, 1537, 1399, 1330, 1088, 673 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.60 (s, 2H, PhH), 8.43 (s, 2H, PhH), 7.96 (d, *J* = 8.7 Hz, 2H, NH₂). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 163.3, 160.3 (d, *J* = 37.5 Hz), 157.1, 152.3, 137.1, 135.6 (t, *J* = 18.8 Hz), 130.5 (t, *J* = 11.3 Hz), 132.1, 129.0, 126.9, 111.8, 102.9, 97.0. HRMS (TOF ES⁻): *m*/*z* calcd for C₁₅H₅Cl₂F₂N₄ [(M-H⁺)], 348.9865; found, 348.9869.

4-Amino-5,7,8-trichloro-2-(4-chlorophenyl)quinazoline-6-carbonitrile (3f)

Slight yellow solid, mp: 275–276°C. IR (KBr): 3441, 3387, 2231, 1618, 1533, 1407, 1321, 1090, 755 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): δ 7.62 (d, J = 8.2 Hz, 2H, PhH), 8.44 (d, J = 7.9, 2H, PhH), 8.24 (br, 2H, NH₂). ¹³C NMR (125 MHz, DMSO- d_6): δ 169.1, 161.09 (d, J = 50.0 Hz), 152.2, 141.4, 139.6, 137.1, 136.2, 135.6 (d, J = 12.5 Hz), 130.6, 129.1, 114.3, 110.8

(d, J = 62.5 Hz), 105.6. HRMS (TOF ES⁻): m/z calcd for C₁₅H₅Cl₄N₄ [(M-H⁺)], 379.9196; found, 379.9193.

4-Amino-5,7,8-trifluoro-2-phenylquinazoline-6-carbonitrile (3g)

Yellow solid, mp: 220–221°C. IR (KBr): 3507, 3347, 2235, 1618, 1548, 1468, 1352, 1109, 699 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.52 (s, 3H, PhH), 8.40 (s, 2H, PhH), 7.89 (br, 2H, NH₂). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 163.9, 159.3, 157.1, 152.1, 150.5, 148.4, 146.7, 141.6, 139.6, 136.9, 131.9 (d, *J* = 65.0 Hz), 128.4 (t, *J* = 86.3 Hz) 109.5, 100.9, 87.0. ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ -103.5 (s, 1F), -129.8 (d, *J* = 18.8 Hz, 1F), -153.8 (d, *J* = 18.8 Hz, 1F). HRMS (TOF ES⁻): *m/z* calcd for C₁₅H₆F₃N₄ [(M-H⁺)], 299.0550; found, 299.0553.

4-Amino-8-chloro-5,7-difluoro-2-phenylquinazoline-6-carbonitrile (3h)

Slight yellow solid, mp: 224–225°C. IR (KBr): 3500, 3343, 2239, 1633, 1550, 1446, 1351, 1207, 690 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.50-7.56 (m, 3H, PhH), 8.41 (d, *J* = 7.1 Hz, 2H, PhH), 7.91 (br, 2H, NH₂). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 171.2, 164.5, 162.8, 159.6-160.6, 157.6, 153.0, 137.31, 132.5 (d, *J* = 26.25 Hz), 129.2 (d, *J* = 15.0 Hz), 113.6 (d, *J* = 11.3 Hz), 110.0, 101.5 (d, *J* = 8.8 Hz), 88.1 (t, *J* = 22.5 Hz). HRMS (TOF ES⁻): *m/z* calcd for C₁₅H₆ClF₂N₄ [(M-H⁺)], 315.0255; found, 315.0254.

4-Amino-5,7,8-trichloro-2-phenylquinazoline-6-carbonitrile (3i)

Slight yellow solid, mp: 273–274°C. IR (KBr): 3503, 3380, 2227, 1611, 1537, 1452, 1395, 1207, 683 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.68 (s, 3H, PhH), 8.40 (d, *J* = 8.6 Hz, 2H, PhH), 7.91 (d, *J* = 8.7, 2H, NH₂). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 180.0, 163.2, 161.7, 152.3, 141.6, 139.6, 136.8, 132.1, 128.9, 114.4, 110.3-111.0 (d, *J* = 78.75 Hz), 105.5. HRMS (TOF ES⁻): *m/z* calcd for C₁₅H₆Cl₃N₄ [(M-H⁺)], 346.9664; found, 346.9662.

4-Amino-5,7,8-trifluoro-2-p-tolylquinazoline-6-carbonitrile (3j)

Slight yellow solid, mp: 245–246°C. IR (KBr): 3400, 2924, 2239, 1635, 1556, 1413, 1353, 1090, 745 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.33 (s, 2H, PhH), 8.32 (s, 2H, PhH), 7.83 (br, 2H, NH₂), 2.46 (d, *J* = 55.5 Hz, 3H, CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 164.1, 159.4 (d, *J* = 18.8 Hz), 157.2, 148.5, 146.8, 134.3, 129.7 (d, *J* = 47.5 Hz), 128.8 (d, *J* = 40.0 Hz), 109.6, 100.9, 88.6, 21.5. HRMS (TOF ES⁻): *m*/*z* calcd for C₁₆H₈F₃N₄ [(M-H⁺)], 313.0707; found, 313.0706.

4-Amino-8-chloro-5,7-difluoro-2-p-tolylquinazoline-6-carbonitrile (3k)

Slight yellow solid, mp: 250–251°C. IR (KBr): 3480, 3060, 2235, 1638, 1557, 1460, 1321, 1089, 726 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.34 (s, 2H, PhH), 8.37 (s, 2H, PhH), 7.87 (br, 2H, NH₂), 2.45 (d, *J* = 51.0 Hz, CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 164.2, 162.3, 160.1 (d, *J* = 41.3 Hz), 157.1, 152.7, 142.3, 134.2, 129.5, 128.9 (d, *J* = 31.3 Hz), 124.2, 109.7, 101.1, 87.4, 21.5. HRMS (TOF ES⁻): *m*/*z* calcd for C₁₆H₈ClF₂N₄ [(M-H⁺)], 329.0411; found, 329.0413.

4-Amino-5,7,8-trifluoro-2-methylquinazoline-6-carbonitrile (31)

Slight yellow solid, mp: 229–231°C. IR (KBr): 3433, 3123, 2243, 1652, 1554, 1407, 1334, 1019, 787 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): δ 7.84 (br, 2H, NH₂), 2.48 (d, J = 31.4 Hz, 3H, CH₃). ¹³C NMR (125 MHz, DMSO- d_6): δ 169.4, 159.0 (d, J = 55.0 Hz), 151.7, 150.1, 148.1, 146.2, 141.0, 109.4, 100.2, 88.7, 26.4. HRMS (TOF ES⁻): m/z calcd for C₁₀H₄F₃N₄ [(M-H⁺)], 237.0394; found, 237.0396.

4-Amino-8-chloro-5,7-difluoro-2-methylquinazoline-6-carbonitrile (3m)

Slight yellow solid, mp: 222–223°C. IR (KBr): 3446, 3128, 2239, 1627, 1558, 1403, 1330, 1199, 828 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): δ 7.72 (br, 2H, NH2), 2.49 (d, J = 19.9 Hz, 3H, CH₃). ¹³C NMR (125 MHz, DMSO- d_6): δ 170.0, 168.8, 160.3, 159.4 (t, J = 27.5 Hz), 157.0, 152.2, 112.3, 109.5, 100.5 (d, J = 10.0 Hz), 87.5 (d, J = 20.0 Hz). HRMS (TOF ES⁻): m/z calcd for C₁₀H₄ClF₂N₄ [(M-H⁺)], 253.0098; found, 253.0097.

4-Amino-5,7,8-trichloro-2-methylquinazoline-6-carbonitrile (3n)

Slight yellow solid, mp: 249–250°C. IR (KBr): 3464, 2231, 1652, 1539, 1407, 1305, 1041, 730 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.00 (br, 2H, NH₂), 2.50 (d, *J* = 9.9 Hz, 3H, CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 168.7, 161.2, 151.9, 139.4, 135.7 (d, *J* = 38.8 Hz), 130.0, 114.2, 110.2, 103.8, 26.3. HRMS (TOF ES⁻): *m*/*z* calcd for C₁₀H₄Cl₃N₄ [(M-H)⁻], 284.9507; found, 284.9510.

A 25 mL round-bottom flask was charged with isophthalonitrile derivatives 1 (2 mmol), DMF (10 mL) and K_2CO_3 (6 mmol). The solution was cooled to 0 °C by ice bath. The hydrazine hydrate 4 or phenylhydrazine 6 (2.4 mmol) was added. After a few minutes, the resulting solution was stirred for 4 h at room temperature until the isophthalonitrile derivatives 1 was completely consumed. The reaction mixture was poured into 25 mL of ice water and filtered to obtain the crude products, which were purified by column chromatography (petroleum ether/EtOAc = 2:1) to afford product 5 or 7 with 70–87% yield. The products were further identified by FTIR, NMR and HRMS, being in good agreement with the assigned structures.

Spectroscopic Data of Polyhalo 3-Aminoindazoles 5 and 7

3-Amino-4,6,7-trifluoro-1H-indazole-5-carbonitrile (5a)

Slight yellow solid, mp: 193–194°C. ¹H NMR (500 MHz, DMSO-*d*₆): δ 5.92 (br, 2H, NH₂), 13.12 (br, 1H, NH). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 155.5, 153.4, 149.3, 133.8 (d, *J* = 20.0 Hz), 131.1, 110.7, 102.6, 80.1. IR (KBr): 3499, 2239, 1648, 1574, 1521, 1395, 1268, 901, 820 cm⁻¹. HRMS (TOF ES⁻): *m/z* calcd for C₈H₂F₃N₄ [(M-H)⁻], 211.0237; found, 211.0239.

3-Amino-7-chloro-4,6-difluoro-1*H*-indazole-5-carbonitrile (5b)

Deep yellow solid, mp: 225-226°C. IR (KBr): 3494, 2239, 1634, 1436, 1326, 1220, 901, 791

cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 5.93 (br, 2H, NH₂), 13.07 (br, 1H, NH). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 158.3, 156.1, 149.6, 141.5, 110.6, 101.2, 97.7, 81.0. HRMS (TOF ES⁻): *m/z* calcd for C₈H₂ClF₂N₄ [(M-H⁺)], 226.9942; found, 226.9942.

3-Amino-4,6,7-trichloro-1*H*-indazole-5-carbonitrile (5c)

Slight yellow solid, mp: 229–230°C. IR (KBr): 3458, 1603, 1399, 1325, 1183, 1048, 673 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): δ 5.83 (br, 2H, NH₂), 13.09 (br, 1H, NH). ¹³C NMR (125 MHz, DMSO- d_6): δ 150.7, 140.5 (d, J = 52.5 Hz), 132.3, 130.0, 128.4, 114.5 (d, J = 90.0 Hz), 110.9, 102.5. HRMS (TOF ES⁻): m/z calcd for C₈H₂Cl₃N₄ [(M-H⁺)], 258.9351, found; 258.9349.

3-Amino-2-(2,4-dinitrophenyl)-4,6,7-trifluoro-2*H*-indazole-5-carbonitrile (7a)

Deep yellow solid, mp: 208–209°C. ¹H NMR (500 MHz, DMSO- d_6): δ 7.51 (d, J = 9.4, 1H, PhH), 8.42 (d, J = 9.4, 1H, PhH), 8.98 (d, J = 36.3, 1H, PhH). ¹³C NMR (125 MHz, DMSO- d_6): δ 164.2, 162.1, 148.8 (d, J = 2.5 Hz), 140.6 (d, J = 13.8 Hz), 138.9, 136.5, 131.4 (d, J = 32.5 Hz), 124.0 (d, J = 26.3 Hz), 116.5, 111.2 (d, J = 28.8 Hz), 101.5, 77.6 (t, J = 20.0 Hz). IR (KBr): 3319, 2231, 1656, 1509, 1342, 1138, 742 cm⁻¹. HRMS (TOF ES⁻): m/z calcd for C₁₄H₆F₃N₆O₄ [(M-H⁺)], 377.0252; found, 377.0250.

3-Amino-7-chloro-2-(2,4-dinitrophenyl)-4,6-difluoro-2*H*-indazole-5-carbonitrile (7b)

Deep yellow solid, mp: 208–209°C. IR (KBr): 3472, 1639, 1537, 1354, 1081, 759 cm^{-1.1}H NMR (500 MHz, DMSO- d_6): δ 7.32–7.62 (m, 5H, PhH). ¹³C NMR (125 MHz, DMSO- d_6): δ 161.9 (d, J = 7.5 Hz), 159.7 (d, J = 6.3 Hz), 155.5, 153.6, 145.8, 144.6, 137.8, 130.2 (d, J = 77.5 Hz), 125.9 (d, J = 66.3 Hz), 111.5, 101.3 (d, J = 20.0 Hz), 97.0 (d, J = 13.8 Hz), 79.1. HRMS (TOF ES⁻): m/z calcd for C₁₄H₄ClF₂N₆O₄ [(M-H⁺)], 392.9956; found, 392.9955.

3-Amino-4,6,7-trifluoro-2-(4-nitrophenyl)-2*H*-indazole-5-carbonitrile (7c)

Yellow solid, mp: 227–228°C. ¹H NMR (500 MHz, DMSO- d_6): δ 7.64–7.93 (m, 2H, PhH), 8.40 (d, J = Hz, 2H, PhH). ¹³C NMR (125 MHz, DMSO- d_6): δ 158.6, 156.5, 147.0, 145.8, 144.1 (d, J = 111.3 Hz), 110.8, 98.0 (d, J = 6.3 Hz), 78.1 (t, J = 18.8 Hz). IR (KBr): 3464, 2231, 1660, 1530, 1349, 1183, 1104, 667 cm⁻¹. HRMS (TOF ES⁻): m/z calcd for C₁₄H₅F₃N₅O₂ [(M-H⁺)], 332.0401, found; 334.0405.

3-Amino-7-chloro-4,6-difluoro-2-(4-nitrophenyl)-2H-indazole-5-carbonitrile (7d)

Yellow solid, mp: 227–228°C. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.68–7.92 (m, 2H, PhH), 8.39 (d, *J* = 8.6 Hz, 2H, PhH). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 161.5, 159.3, 155.4, 153.4, 145.9 (d, *J* = 138.8 Hz), 142.5, 125.8 (d, *J* = 118.8 Hz), 110.8, 100.8 (d, *J* = 20.0 Hz), 96.6 (d, *J* = 12.5 Hz), 79.1 (d, *J* = 16.3 Hz). IR (KBr): 3429, 2227, 1639, 1529, 1399, 1342, 1089, 669 cm⁻¹. HRMS (TOF ES⁻): *m/z* calcd for C₁₄H₅ClF₂N₅O₂ [(M-H⁺)], 348.0105; found, 348.0102.

3-Amino-4,6,7-trifluoro-2-phenyl-2H-indazole-5-carbonitrile (7e)

Yellow solid, mp: 246–247°C. IR (KBr): 3383, 2227, 1656, 1529, 1399, 1277, 1179, 763 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.28–7.62 (m, 5H, PhH). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 158.5, 156.4, 145.3 (d, *J* = 10.0 Hz), 143.6 (t, *J* = 12.5 Hz), 139.7, 137.5 (d, *J* = 38.8 Hz), 135.4 (d, *J* = 12.5 Hz), 133.4 (d, *J* = 12.5 Hz), 129.8, 125.7 (d, *J* = 35.0 Hz), 111.1 (d, *J* = 35.0 Hz), 97.8 (t, *J* = 6.3 Hz), 77.6 (t, *J* = 20.0 Hz). ¹⁹F NMR (470 MHz, DMSO-*d*₆): δ -109.8 (t, *J* = 9.4Hz, 1F), -141.8 (d, *J* = 14.1 Hz, 1F), -162.1 (s, 1F). HRMS (TOF ES⁻): *m/z* calcd for C₁₄H₆F₃N₄ [(M-H⁺)], 287.0550; found, 287.0552.

3-Amino-7-chloro-4,6-difluoro-2-phenyl-2H-indazole-5-carbonitrile (7f)

Slight green solid, mp: 221–222°C. IR (KBr): 3471, 2222, 1641, 1529, 1350, 1142, 608 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.34–7.62 (m, 5H, PhH). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 161.3 (d, *J* = 7.5 Hz), 159.2, 155.0, 153.1, 145.3, 144.1, 137.32, 129.7 (t, *J* = 76.3 Hz), 129.4, 125.6, 111.1, 100.8 (d, *J* = 25.0 Hz), 96.4 (d, *J* = 13.8 Hz), 78.6 (t, *J* = 17.5 Hz). HRMS (TOF ES⁻): *m/z* calcd for C₁₄H₆ClF₂N₄ [(M-H⁺)], 303.0255; found, 303.0255.

3-Amino-4,6,7-trichloro-2-phenyl-2*H*-indazole-5-carbonitrile (7g)

Yellow solid, mp: 227–228°C. IR (KBr): 3482, 2227, 1627, 1492, 1444, 1350, 1036, 722 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 6.98 (s, 1H, PhH), 7.57-7.64 (d, *J* = 35 Hz, 4H, PhH) ppm. ¹³C NMR (125 MHz, DMSO-*d*₆): δ 159.2, 145.1 (d, *J* = 47.5 Hz), 137.4, 135.4, 134.5, 129.8 (d, *J* = 12.5 Hz), 128.6, 125.9, 122.1, 118.4, 115.1, 105.7, 100.3. HRMS (TOF ES⁻): *m/z* calcd for C₁₄H₆Cl₃N₄ [(M-H)⁻], 334.9664; found, 334.9668.

¹H NMR and ¹³C NMR Spectra for Polyhalo 2-Aryl-4-aminoquinazolines 3

Figure 1. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3a

Figure 2. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 3a

Figure 3. ¹⁹F NMR (470 MHz, DMSO- d_6) spectra of compound **3a**

Figure 4. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3b**

Figure 6. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3c

Figure 8. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3d

Figure 10. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3e

Figure 18. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3i

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Figure 20. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3j

Figure 22. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 3k

Figure 24. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 31

Figure 25. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 31

Figure 26. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **3m**

Figure 28. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **3n**

Figure 29. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **3n**

Figure 31. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 5a

Figure 32. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 5b

Figure 33. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 5b

Figure 34. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **5**c

Figure 35. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound **5c**

Figure 36. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 7a

Figure 37. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 7a

Figure 38. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 7b

Figure 39. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 7b

Figure 40. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **7c**

Figure 41. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 7c

Figure 42. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 7d

Figure 43. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 7d

Figure 44. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **7e**

Figure 45. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 7e

Figure 46. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound 7f

Figure 48. ¹H NMR (500 MHz, DMSO- d_6) spectra of compound **7g**

Figure 49. ¹³C NMR (125 MHz, DMSO- d_6) spectra of compound 7g