Supplementary information

Enhanced Electrochemical Oxygen Reduction Reaction by Restacking of N-doped Single Graphene Layers

Chang Hyuck Choi,^a Min Wook Chung,^b Sung Hyeon Park,^a and Seong Ihl Woo^{*a,b}

^aDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea

^bGraduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea

*Corresponding author

Fax: +82-42-350-8890

Email: siwoo@kaist.ac.kr

Catalysta ¹		1 st heat-treatment	t	2 nd heat-treatment		
Catalysis	H.T. ²	materials	A.L. ³	H.T. ²	materials	A.L. ³
NGr	-	-	-	-	-	-
NGr-H	0	-	-	-	-	-
NGr-H _M	0	Co-Fe	-	-	-	-
NGr-H _M L	0	Co-Fe	0	-	-	-
NGr-H _{DM}	0	Co-Fe/DCDA	-	-	-	-
NGr-H _{DM} L	0	Co-Fe/DCDA	0	-	-	-
$NGr-H_{DM}LH_{DM}$	0	Co-Fe/DCDA	0	0	Co-Fe/DCDA	-
NGr-H _{DM} LH _{DM} L	0	Co-Fe/DCDA	0	0	Co-Fe/DCDA	0

Table S1. Abbreviated names of the prepared catalysts according to further treatment steps of

 NGr.

¹The name of catalysts were abbreviated as treatment steps of reduced GO (NGr); heattreatment without any additives (H), heat-treatment with metals (H_M), DCDA (H_D), or metal-DCDA composite (H_{DM}), and acid-leaching (L).

²H.T.: heat-treatment.

³A.L.: acid-leaching.

CO	NCr	NCr H	NGr-H _M	NGr-H _{MD}	NGr-
60	NGI	NGI-П			H _{MD} LH _{MD}
65.2	83.7	95.0	93.3	90.5	91.4
34.8	7.7	1.7	4.5	3.1	2.5
-	8.6	3.3	2.2	6.4	6.1
53.4	9.2	1.8	4.8	3.4	2.7
-	10.3	3.5	2.4	7.1	6.7
73	232	189	194	157	158
	GO 65.2 34.8 - 53.4 - 73	GO NGr 65.2 83.7 34.8 7.7 - 8.6 53.4 9.2 - 10.3 73 232	GO NGr NGr-H 65.2 83.7 95.0 34.8 7.7 1.7 - 8.6 3.3 53.4 9.2 1.8 - 10.3 3.5 73 232 189	GONGrNGr-HNGr-H_M 65.2 83.7 95.0 93.3 34.8 7.7 1.7 4.5 - 8.6 3.3 2.2 53.4 9.2 1.8 4.8 - 10.3 3.5 2.4 73 232 189 194	GONGrNGr-HNGr-H_MNGr-H_{MD} 65.2 83.7 95.0 93.3 90.5 34.8 7.7 1.7 4.5 3.1 - 8.6 3.3 2.2 6.4 53.4 9.2 1.8 4.8 3.4 - 10.3 3.5 2.4 7.1 73 232 189 194 157

 Table S2 Compositions and BET surface areas of the prepared catalysts.

¹at. %, ²Atomic ratio (%), ${}^{3}m^{2}/g$

Table S3 Electrochemical properties of the graphene derived catalysts for the ORRs in 1M HClO₄ electrolyte.

	NGr	NGr-H	NGr-H _M	NGr-H _{DM}	NGr-H _{DM} LH _{DM}
O. P. ¹	0.58	0.77	0.86	0.89	0.89
$M. A.^2$	0	0.02	0.22	0.99	1.28
n ³	3.58	3.29	3.89	3.92	3.88

¹Onset potential (V, vs. RHE)

²Mass activity (mA mg⁻¹) at 0.75 V (V, vs. RHE)

³Number of electrons transferred at 0.4 V (V, vs. RHE)

Table S4 Proportion of various N-doping types in the graphene-derived catalysts obtained from the XPS results: pyridinic-N (N1); amide, amine, or pyrrolic-N (N2); graphitic-N (N3); and pyridinic-oxide (N4).

0/	CO	NCr	NCr H	NC- U	NC- U	NGr-
70	60	NOI	NOI-H	NOI-M _M	NGI-H _{DM}	H _{DM} LH _{DM}
N1	-	26.7	50.4	54.4	60.8	59.5
N2	-	46.5	-	-	-	-
N3	-	46.6	35.3	31.9	27.3	28.7
N4	-	10.2	14.3	13.7	11.9	11.9

Fig. S1 TEM image of the graphitic carbon layers deposited on the Fe metal nanoparticles *via* carbonization of the DCDA on the metal seeds. This material was obtained *via* pyrolysis of the DCDA on Fe₂O₃/Vulcan XC-72R at 900 °C under an Ar flow, as reported previously (*Int J Hydrogen Energ* **37**, 4563-4570 (2012)).

Fig. S2 TEM images of the NGr-H_{DM}LH_{DM}. Numbers in the figure indicate the number of graphene single layers in the catalysts indicated by red circles.

Fig. S3 Cyclic voltammetry results of the graphene-derived catalysts. The data were obtained in 1M HClO₄ purged with nitrogen (black line) or oxygen (red line) during 1h.

Fig. S4 The ORR pathway results of the prepared graphene-derived catalysts. (a) The H_2O_2 production yield during the ORRs obtained from the Pt-ring disk electrode, and (b) the number of electrons transferred in the ORRs at 0.4 V (*vs.* RHE).

Fig. S5 Current-time chronoamperometric response (0.6 V, vs RHE) of NGr- $H_{DM}LH_{DM}$ and Pt/C for 10 h in 1M HClO₄ with continuous oxygen bubbling.

Fig. S6 XPS results of the prepared catalysts; (a) GO, (b) NGr, (c) NGr-H, (d) NGr-H_M, (e) NGr-H_{DM}, and (f) NGr-H_{DM}LH_{DM}. The XPS-N_{1s} results were deconvoluted with pyridinic-N (N1); amide, amine, or pyrrolic-N (N2); graphitic-N (N3); and pyridinic-oxide (N4).