Protective group-free synthesis of new chiral diamines via direct azidation of

1,1-diaryl-2-aminoethanols†

Harendra Nath Roy, Arigala Pitchaiah, Miri Kim, In Taek Hwang and Kee-In Lee*

Supporting Information

Table of Contents

1. General	S2
2. Preliminary studies for azidation of benzyl alcohols	S 3
3. General procedure for the azidation of 1/4	S 5
4. Characterization of 2c -2i and 5a-5f	S 5
5. General Procedure for the reduction of 2/5	S11
6. Characterization of 3c-3i and 6a-6f	S11
7. References	S18
8. Copies of ¹ H and ¹³ C NMR spectra	S19

General

All the chemicals used in this work were purchased from Aldrich and used without further purification. Melting points were determined on a Clarkson IA9200 Electro thermal melting point apparatus and temperatures were uncorrected. Optical rotations were determined at 589 nm (sodium D line) by using a Rudolph Autopoly-IV digital polarimeter; $[\alpha]_D$ values are given in unit of 10 deg⁻¹ cm² g⁻¹. ¹H NMR &¹³C NMR spectra were recorded at 300 MHz and 75 MHz respectively on a Jeol Eclipse FT 300 MHz spectrometer in CDCl₃ as a solvent using TMS as internal standard and chemical shifts were expressed as δ in ppm; coupling constants *J* are given in Hz. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm⁻¹. Flash column chromatography was performed using Merck Kiegel 60 silica gel (particles size 0.040-0.063 mm). For thin-layer chromatography (TLC), Merck silica gel 60 F₂₅₄ plates were used. Mass spectra were recorded by electronic impact (EI) and obtained on an Agilent 1100 series VLL or JEOL the MStation JMS700 mass spectrometer.

Entry	Substrate	Equiv of	Solvent	Product	Yield
-		NaN ₃			(%)
1	ОН	3	toluene	N ₃	47
2	N H H H	5	toluene	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ } \\ \end{array} } \\ \end{array} } \\ } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ } \\ \end{array} } \\ } \\ \end{array} } } \\ \end{array} } } } \\ } } } \\ } } } } } } } } } }	67
3		7	toluene		79
4	Ph Ph OH 1b	3	toluene	Ph Ph N ₃ 2b	30
5		7	toluene		81
6		7	CHCl ₃		55
7		7	THF		38
8	Ph Ph Ph Ph	7	toluene	$Ph \rightarrow N_3$ $Ph \rightarrow Ph$	87

Preliminary studies for azidation of benzyl alcohols

4-Azidomethylbiphenyl (entry 1)

Yellow oil (37 mg, 47%); IR (neat); 2104 cm⁻¹; ¹H NMR (CDCl₃): δ_H 7.62-7.57 (m, 4H), 7.47-7.33 (m, 5H), 4.39 (s, 2H); ¹³C NMR (CDCl₃, 300Hz): δ_C 141.2, 140.4, 134.3, 128.8, 128.6, 127.5, 127.4, 127.0, 54.5; EI-MS: *m/z* (%) 209 (M⁺, 17), 180 (29), 167 (100), 151 (62).

1-[4-(Azidophenylmethyl)]phenylpiperidine (2a, entry 3)

Colorless oil (107 mg, 79%); IR (neat) 2103 cm⁻¹; ¹ H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ 7.37-7.20 (m, 7H), 6.88 (d, 2H, J = 8.7 Hz), 5.78 (s, 1H), 3.15-3.11 (m, 4H), 1.70-1.65 (m, 6H); ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ 128.3, 127.5, 127.2, 126.4, 116.2, 75.9, 50.4, 25.7, 24.2; EI-MS: m/z (%) 292 (M⁺, 6), 264 (7), 250 (100), 207 (9).

1,1-Diphenyl-1-azidopropane (2b, entry 5)

Colorless oil (61 mg, 81%); IR (neat); 2101 cm⁻¹; ¹H NMR (CDCl₃, 300MHz): $\delta_{\rm H}$ 7.35-7.22 (m, 10H), 2.43 (q, 2H, *J* = 6.0 Hz), 0.83 (t, 3H, *J* = 6.2 Hz); ¹³C NMR (CDCl₃, 75MHz): $\delta_{\rm C}$ 142.9, 128.2, 127.3, 127.1, 73.0, 31.5, 8.56; EI-MS: *m/z* (%) 237 (M⁺, 3), 208 (12), 195 (36), 180 (100).

Triphenylazidomethane (entry 8)

Colorless oil (143 mg, 87%); IR (neat); 2103 cm⁻¹; ¹H NMR (CDCl₃): δ_H 7.37-7.25 (m, 15H); ¹³C NMR (CDCl₃, 75MHz): δ_C 142.8, 128.7, 128.6, 128.4, 128.3, 128.1, 128.0, 127.7, 127.6, 127.3, 126.8, 77.1; EI-MS: *m/z* (%) 285 (3), 243 (100), 180 (43), 165 (77), 77 (59).

General procedure for the azidation of 1/4.

To a suspension of NaN₃ (228 mg, 3.5 mmol) in toluene (7 mL) was added concentrated sulfuric acid (0.19 mL, 3.5 mmol) drop-wise for 10 min using syringe pump and the mixture was stirred for 15 min at room temperature. To this mixture, a solution of **1/4** (0.5 mmol) in toluene (15 mL) was added via syringe at ice-cold temperature and the resulting mixture was stirred vigorously for 5-10 min at room temperature. The reaction mixture was quenched with a saturated NaHCO₃ solution (15 mL, until pH 10), then organic layer was extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with brine (10 mL) and dried over anhydrous MgSO₄. The solvents were removed under reduced pressure to give a residue. The crude residue was purified by flash silica gel chromatography (15-20% EtOAc/hexane) to afford **2/5**.

(S)-N-(1-azido-1,1-diphenylpropan-2-yl)-4-methylbenzenesulfonamide (2c)

Obtained as a white solid (168 mg, 83%); mp: 137 °C; $[\alpha]_D^{25}$ = -12.6 (*c* 0.56, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.67 (dd, 2H, *J* = 6.7, 1.6 Hz, Ar<u>H</u>), 7.39-7.24 (m, 12H, Ar<u>H</u>), 4.53 (dd, 1H, *J* = 9.3, 6.5 Hz, C<u>H</u>), 4.25 (d, 1H, *J* = 9.2 Hz, N<u>H</u>), 2.43 (s, 3H, ArC<u>H</u>₃), 1.12 (d, 3H, *J* = 6.5 Hz, C<u>H</u>₃); ¹³C NMR (75 MHz, CDCl₃): δ_C 143.3, 139.2, 138.6, 138.1, 129.5, 128.41, 128.40, 128.2, 128.1, 128.0, 127.8, 127.0, 75.6, 54.9, 21.5, 18.7; FT-IR: 2106 cm⁻¹; EI-MS: *m/z* (%) 364 [M-N₃]⁺, 299, 241, 223, 198 (100); ESI-LC/MS: *m/z* 407 [M+H]⁺.

(S)-N-(1-azido-3-methyl-1,1-diphenylbutan-2-yl)-4-methylbenzenesulfonamide (2d)

Obtained as a white solid (171 mg, 79%); mp: 139 °C; $[\alpha]_D^{25}$ = -8.68 (*c* 0.54, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.58 (d, 2H, *J* = 1.8 Hz, Ar<u>H</u>), 7.35-7.25 (m, 10H, Ar<u>H</u>), 7.18 (d, 2H, *J* = 7.8, Ar<u>H</u>), 4.48 (d, 1H, *J* = 10.0 Hz, C<u>H</u>N), 4.30 (d, 1H, *J* = 10.2 Hz, N<u>H</u>Ts), 2.38 (s, 3H, Ar C<u>H</u>₃), 2.08-2.03 (m, 1H, C<u>H</u>CH₃), 1.06 (d, 3H, *J* = 6.2 Hz, C<u>H</u>₃CH), 0.42 (d, 3H, *J* = 6.1 Hz, C<u>H</u>₃CH); ¹³C NMR (75 MHz, CDCl₃): δ_C 143.0, 139.9, 139.2, 139.0, 129.4, 128.6, 128.6, 128.3, 128.2, 127.8, 126.9, 63.4, 31.0, 28.7, 23.0, 21.6, 16.9; FT-IR: 2103 cm⁻¹; EI-MS: *m/z* (%) 392 [M-N₃]⁺ (0.1), 260, 226 (100); ESI-LC/MS: *m/z* 435 [M+H]⁺; 433, 405, 224.

(S)-N-(1-azido-1,1-bis(4-methoxyphenyl)-3-methylbutan-2-yl)-4-methylbenzenesulfonamide (2e)

White solid (173 mg, 70%); mp: 169 °C; $[\alpha]_D^{25}$ = -8.22 (*c* 0.52, CHCl₃);¹H NMR (300 MHz, CDCl₃): δ_H 7.61 (d, 2H, *J* = 8.4 Hz, Ar<u>H</u>), 7.26-7.14 (m, 6H, Ar<u>H</u>), 6.84-6.78 (m, 4H, Ar<u>H</u>), 4.29 (m, 2H, C<u>H</u>NH, N<u>H</u>Ts), 3.80 (s, 6H, O<u>Me</u>), 2.39 (s, 3H, ArC<u>H₃</u>), 2.06-2.01 (m, 1H, C<u>H</u>CH₃), 1.05 (d, 3H, *J* = 6.9 Hz, C<u>H₃CH</u>), 0.39 (d, 3H, *J* = 6.9 Hz, C<u>H₃CH</u>); ¹³C NMR (75 MHz, CDCl₃): δ_C 159.2, 159.0, 142.7, 138.9, 131.8, 130.9, 129.4, 129.2, 128.9, 126.7, 113.6, 75.9, 63.4, 55.2, 55.1, 28.5, 22.9, 21.4, 16.9; FT-IR (neat): 3307, 2961, 2103 cm⁻¹; EI-MS: *m/z* (%) 452 [M-N₃]⁺, 408 (6), 296 (100); ESI-LC/MS: *m/z* 495 [M+H]⁺; 468, 450.

(S)-N-(1-azido-1,1-bis(4-methoxyphenyl)-3-methylbutan-2-yl)-2,2,2-trifluoroacetamide (2f)

Colorless oil (124 mg, 57%); $[\alpha]_D^{25}$ = - 17.7 (*c* 0.65, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.28-7.22 (m,

4H, Ar<u>H</u>), 6.93-6.86 (m, 4H, Ar<u>H</u>), 6.34 (d, 1H, J = 10.5 Hz, N<u>H</u>CO), 4.92 (d, 1H, J = 10.5 Hz, C<u>H</u>N), 3.79 (s, 3H, O<u>M</u>e), 3.75 (s, 3H, ArO<u>M</u>e), 2.07 (m, 1H, C<u>H</u>CH₃), 1.00 (d, 3H, J = 6.7 Hz, C<u>H</u>₃CH), 0.61 (d, 3H, J = 6.7 Hz, C<u>H</u>₃CH); ¹³ C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 159, 157.6 (q, J = 36.6 Hz, -CF₃), 132.3, 131.9, 128.7, 128.6, 121.7, 117.9, 114.4, 114.1, 114.0, 113.9, 75.4, 58.4, 28.7, 23.0, 16.6; FT-IR: 2107 cm⁻¹; EI-MS: m/z (%) 394 [M-N₃]⁺, 351, 321, 268, 239 (100); ESI-LC/MS: m/z = 437 [M+H]⁺ 435, 405, 379, 141.

(S)-N-(2-azido-1,2,2-triphenylethyl)-4-methylbenzenesulfonamide (2g)

White solid (147 mg, 63%); mp: 193 °C; $[\alpha]_D^{25}$ = -25.7 (*c* 0.55, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.38-7.31 (m, 5H, Ar<u>H</u>), 7.22-7.13 (m, 8H, Ar<u>H</u>), 6.95 (t, 1H, *J* = 7.5 Hz, Ar<u>H</u>), 6.86-6.76 (m, 3H, Ar<u>H</u>), 6.46 (d, 2H, *J* = 7.5 Hz, Ar<u>H</u>), 5.44 (d, 1H, *J* = 9.6 Hz, C<u>H</u>N), 5.08 (dd, 1H, *J* = 2.6, 9.6 Hz, N<u>H</u>Ts), 2.23 (s, 3H, ArC<u>H</u>₃); ¹³C NMR (75 MHz, CDCl₃): δ_C 142.9, 140.0, 138.9, 137.2, 135.2, 129.0, 128.5, 128.5, 128.2, 128.1, 127.3, 127.2, 127.1, 75.6, 62.5, 21.4; FT-IR (Neat): 3287, 2107 cm⁻¹; EI-MS: *m/z* (%) 426 [M-N₃]⁺ (0.99), 260 (100); ESI-LC/MS: *m/z* 469 [M+H]⁺, 467, 439.

(S)-benzyl (1-azido-1,1,3-triphenylpropan-2-yl)carbamate (2h)

Colorless oil (152 mg, 66%); $[\alpha]_D^{25}$ = -21.8 (*c* 0.55, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.47-7.10 (m,

20H, Ar<u>H</u>), 5.13-5.05 (m, 1H, C<u>H</u>N), 4.95-4.78 (m, 2H, CbzC<u>H</u>₂), 3.31 (dd, 1H, J = 14.1, 2.4 Hz, C<u>H</u>₂CH), 2.20-2.16 (m, 1H, C<u>H</u>₂CH); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 155.8, 140.0, 139.7, 137.7, 136.5, 129.3, 128.6, 128.6, 128.5, 128.4, 128.2, 128.1, 126.6, 76.2, 66.7, 57.5, 38.6; FT-IR: 2103 cm⁻¹; ESI-LC/MS: *m/z* 463 [M+H]⁺, 462, 461, 252, 171.

(S)-2-(azidodiphenylmethyl)-1-tosylpyrrolidine (2i)

White solid (149 mg, 69%); mp 231 °C, $[\alpha]_D^{25}$ = -38.2 (*c* 0.54, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.68 (dd, 2H, *J* = 1.6, 6.5 Hz, Ar<u>H</u>), 7.39-7.24 (m, 12H, Ar<u>H</u>), 5.21 (dd, 1H, *J* = 3.3, 9.0 Hz, C<u>H</u>NTs), 3.45-3.36 (m, 1H, C<u>H</u>₂NTs), 2.44 (s, 3H, ArC<u>H</u>₃), 2.43-2.34 (m, 1H, C<u>H</u>₂NTs), 2.06-1.85 (m, 2H, C<u>H</u>₂CH₂), 1.38-1.35 (m, 1H, C<u>H</u>₂CH₂), 1.34-1.29 (m, 1H, C<u>H</u>₂CH₂); ¹³C NMR (75 MHz, CDCl₃): δ_C 143.4, 140.3, 139.5, 137.1, 129.6, 129.3, 128.8, 128.4, 128.3, 128.1, 128.0, 127.5, 76.2, 65.7, 49.4, 29.0, 24.2, 21.7; FT-IR (neat): 3336, 2990, 2106 cm⁻¹; FAB-MS: *m/z* 433 [M+H]⁺, 390, 224.

(S)-2-Azido-2,2-diphenyl-1-methyl-1-aminoethane (5a)

Colorless oil (94.5 mg, 75%); $[\alpha]_D^{23}$ = -25.7 (*c* 0.56, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.43-7.23 (m, 10H, Ar<u>H</u>), 4.04 (q, 1H, *J* = 6.5 Hz, C<u>H</u>NH), 1.25 (brs, 2H, N<u>H</u>₂), 1.03 (d, 3H, *J* = 6.5 Hz, C<u>H</u>₃CH); ¹³C NMR (75 MHz, CDCl₃): δ_C 140.2, 140.1, 128.4, 128.2, 128.0, 127.9, 127.8, 127.6, 77.2, 52.9, 18.6; FT-IR: 3159, 2927, 2103 cm⁻¹; FAB-MS *m/z* 253 [M+H]⁺, 210, 194, 182, 132, 105.

(S)-1-azido-3-methyl-1,1-diphenylbutan-2-amine (5b)

Semi-solid (103 mg, 74%); $[\alpha]_D^{20}$ = -90.2 (*c* 0.49, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.47-7.24 (m, 10H, Ar<u>H</u>), 3.78 (s, 1H, C<u>H</u>NH), 1.84-1.77 (m, 1H, C<u>H</u>CH₃), 1.20 (brs, 2H, N<u>H</u>₂), 1.01 (d, 3H, *J* = 6.9 Hz, C<u>H</u>₃CH), 0.58 (d, 3H, *J* = 6.9 Hz, C<u>H</u>₃CH); ¹³C NMR (75 MHz, CDCl₃): δ_C 141.6, 141.2, 128.6, 128.5, 128.0, 127.7, 127.5, 127.4, 76.9, 61.6, 27.9, 23.5, 15.7; FT-IR: 3167, 2104 cm⁻¹; EI-HRMS calc. for C₁₇H₂₀N₄[M]⁺ 280.1688, found 280.1695.

(S)-2-azido-1,2,2-triphenylethanamine (5c)

Colorless oil (122 mg, 78%); ¹H NMR (300 MHz, CDCl₃): $[\alpha]_D^{25}$ = -86⁰ (c, 0.545, CHCl₃); δ_H 7.44-7.32 (m, 5H, Ar<u>H</u>), 7.18-7.06 (m, 8H, Ar<u>H</u>), 6.95-6.91 (m, 2H, Ar<u>H</u>), 5.04 (s, 1H, C<u>H</u>NH), 1.71 (brs, 2H, N<u>H</u>₂); ¹³C NMR (75 MHz, CDCl₃): δ_C 141.2, 140.4, 139.7, 128.8, 128.7, 128.3, 127.9, 127.6, 127.5, 127.4, 127.3, 76.5, 62.8; FT-IR: 2104 cm⁻¹; FAB-MS *m/z* 315 [M+H]⁺, 298, 272, 210, 180, 167, 106.

(S)-1-(2-azido-1,2,2-triphenylethyl)piperidine (5d)

White solid (138.8 mg, 72.6%); mp:128.5-129.5; $[\alpha]_D^{25}$ = -13.8 (*c* 1.33, CHCl₃); ¹H NMR (300 MHz,

CDCl₃): $\delta_{\rm H}$ 7.64 (d, J = 6.9 Hz, 2H, Ar<u>H</u>), 7.41-7.24 (m, 7H, Ar<u>H</u>), 7.19-7.03 (m, 6H, Ar<u>H</u>), 4.63 (s, 1H, C<u>H</u>N), 2.85 (pent, J = 5.8 Hz, 2H, C<u>H</u>₂N), 2.28 (brs, 2H, C<u>H</u>₂N), 1.64-1.58 (m, 4H, C<u>H</u>₂CH₂), 1.33 (pent, 2H, J = 5.5 Hz, C<u>H</u>₂CH₂); ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 143.2, 134.9, 130.8, 128.7, 127.9, 127.6, 127.5, 127.3, 127.1, 126.5, 76.2, 75.7, 54.0, 26.6, 24.0; FT-IR: 3167, 2104 cm⁻¹; FABMS: *m/z* 382 [M+H]⁺.

(S)-1-azido-1,1,3-triphenylpropan-2-amine (5e)

White solid (123 mg, 75%); mp: 123 °C; $[\alpha]_D^{25}$ =-50.8 (*c* 0.51, CHCl₃); ¹HNMR (300 MHz, CDCl₃): _H 7.38-7.02 (m, 15H, Ar<u>H</u>), 3.98-3.94 (m, 1H, C<u>H</u>NH), 2.79 (d, 1H, *J* = 15.5 Hz, C<u>H</u>₂CH), 2.04-1.96 (m, 1H, C<u>H</u>₂CH), 1.05 (brs, 2H, N<u>H</u>₂); ¹³C NMR (75 MHz, CDCl₃): δ_C 140.9, 140.3, 139.7, 129.3, 128.6, 128.6, 128.6, 128.6, 128.1, 127.8, 127.7, 127.6, 126.6, 76.4. FT-IR: 2104 cm⁻¹; EI-HRMS calc. for C₂₁H₂₀N₄ [M]⁺ 328.1688, found 328.1682.

(S)-2-(azidodiphenylmethyl)pyrrolidine¹ (5f)

For azidation of **4f**, CHCl₃ was used as a solvent because of the solubility problem, and **5f** (106 mg, 76%) was obtained as light yellow liquid; $[\alpha]_D^{25} = -92.90$ (*c* 2.0, CHCl₃.); ¹H NMR (300 MHz, CDCl₃): δ_H 7.49-7.45 (m, 2H, Ar<u>H</u>), 7.38-7.20 (m, 8H, Ar<u>H</u>), 4.31 (t, *J* = 7.2 Hz, 1H, C<u>H</u>NH), 2.96-2.92 (m, 2H, C<u>H</u>₂N), 1.88 (s, 1H, N<u>H</u>), 1.72-1.58 (m, 4H, C<u>H</u>₂CH₂, C<u>H</u>₂CH₂) ppm; ¹³C NMR (75 MHz, CDCl₃): δ_C 142.6, 142.2, 128.5, 128.1, 127.9, 127.5, 127.1, 127.0, 75.2, 65.3, 47.2, 28.0, 26.0 ppm; FT-IR: 2109 cm⁻¹ FABMS: *m/z* 279

 $[M+H]^+$; EI-HRMS calc. for $C_{17}H_{18}N_4[M]^+$ 278.1531, found 278.1527

General Procedure for the reduction of 2/5.

To a solution of 2/5 (~150 mg) in a mixture of EtOH/EtOAc (2:1, 9 mL) was added 10% Pd/C (15 mg) under argon atmosphere. Then the flask was fit tightly over with a balloon filled with hydrogen gas. The mixture stirred at room temperature for 2h. The reaction mixture was filtered through a pad of Celite and the solvents were evaporated under reduced pressure to give a residue. The crude residue was purified by flash silica gel chromatography (15-30% EtOAc/hexane for **3** or 5-15% MeOH/CHCl₃ for **6**) to afford the desired product.

(S)-N-(1-amino-1,1-diphenylpropan-2-yl)-4-methylbenzenesulfonamide (3c)

White solid (143 mg, 75%); mp 145 °C; $[\alpha]_D^{25}$ = - 43.0 (*c* 0.54, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.52 (d, 2H, *J* = 8.4 Hz, Ar<u>H</u>), 7.33-7.12 (m, 12H, Ar<u>H</u>), 4.89 (d, 1H, *J* = 7.5 Hz, N<u>H</u>Ts), 4.29-4.25 (m, 1H, C<u>H</u>CH₃), 2.39 (s, 3H, Ar C<u>H₃</u>), 1.78 (brs, 2H, N<u>H</u>₂), 1.09 (d, 3H, *J* = 6.6 Hz, C<u>H</u>₃CH); ¹³C NMR (75 MHz, CDCl₃,): δ_C 145.2, 145.1, 143.0, 138.1, 129.6, 128.4, 128.3, 127.06, 127.02, 126.8, 126.6, 64.3, 55.7, 21.8, 18.1; FT-IR: 3321, 3129 cm⁻¹; ESI-LCMS: *m/z* 381 [M+H]⁺, 380, 365, 364.

(S)-N-(1-amino-3-methyl-1,1-diphenylbutan-2-yl)-4-methylbenzenesulfonamide (3d)

White solid (167 mg, 82%); mp 106 °C; $[\alpha]_D^{25}$ = +72.4 (*c* 0.63, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.44 (d, 2H, *J* = 8.1 Hz, Ar<u>H</u>), 7.39-7.27 (m, 8H, Ar<u>H</u>), 7.26-7.10 (m, 4H, Ar<u>H</u>), 5.03 (d, 1H, *J* = 8 Hz, N<u>H</u>Ts), 4.10 (d, 1H, *J* = 8 Hz, C<u>H</u>CH), 2.37 (s, 3H, ArC<u>H₃</u>), 1.95-1.93 (m, 3H, C<u>H</u>CH₃, N<u>H₂</u>), 0.94 (d, 3H, *J* = 6 Hz, C<u>H₃CH</u>), 0.64 (d, 3H, *J* = 6 Hz, C<u>H₃CH</u>); ¹³C NMR (75 MHz, CDCl₃): δ_C 146.2, 145.5, 142.5, 138.9, 129.4, 128.2, 128.0, 126.8, 126.7, 126.5, 126.5, 115.7, 66.4, 64.5, 29.1, 23.5, 21.5, 18.2; FT-IR (neat): 3323, 3129 cm⁻¹; EI-HRMS calc. for C₂₄H₂₈N₂O₂S [M]⁺ 408.1871, found 408.1865.

(S)-N-(1-amino-1,1-bis(4-methoxyphenyl)-3-methylbutan-2-yl)-4-methylbenzenesulfonamide (3e)

White solid (173 mg, 74%); mp 173 °C; $[\alpha]_D^{25} = +93.1$ (*c* 0.51, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.45 (d, 2H, J = 8.4 Hz, Ar<u>H</u>), 7.27 (d, 2H, J = 6.3 Hz, Ar<u>H</u>), 7.13-7.09 (m, 4H, Ar<u>H</u>), 6.85 (d, 2H, J = 8.4 Hz, Ar<u>H</u>), 6.59 (d, 2H, J = 8.4 Hz, Ar<u>H</u>), 4.98 (d, 1H, J = 9.0 Hz, N<u>H</u>Ts), 4.07 (d, 1H, J = 9.0 Hz, C<u>H</u>CH), 3.79 (s, 3H, O<u>Me</u>), 3.73 (s, 3H, O<u>Me</u>), 2.37 (s, 3H, ArC<u>H₃</u>), 1.99-1.88 (m, 3H, C<u>H</u>CH₃, N<u>H₂</u>), 0.97 (d, 3H, J = 6.0 Hz, C<u>H₃CH</u>), 0.67 (d, 3H, J = 6.1 Hz, C<u>H₃CH</u>); ¹³C NMR (75 MHz, CDCl₃): δ_C 158.2, 142.2, 138.8, 138, 137.6, 129.8, 129.1, 128.6, 128.1, 128.0, 127.8, 127.6, 127.5, 127.0, 126.9, 126.6, 113.4, 113.1, 69.0, 65.5, 64.6, 55.1, 49.7, 29.0, 23.3, 21.5; FT-IR: 3331, 2941 cm⁻¹; EI-HRMS calc. for C₂₆H₃₂N₂O₄S [M]⁺ 468.2083, found 468.2081.

(S)-N-(1-amino-1,1-bis(4-methoxyphenyl)-3-methylbutan-2-yl)-2,2,2-trifluoroacetamide (3f)

MeO-4-Ph MeO-4-Ph NHCOCF₃ To a solution of **2d** (150 mg, 0.34 mmol) in a mixture of EtOH/EtOAc (2:1, 9 mL) was added Pt₂O (15 mg), and then the mixture was hydrogenated for 2h under 50 psi using Parr hydrogenation apparatus. The reaction mixture was filtered through a pad of Celite and the solvents were evaporated under reduced pressure to give a residue. The crude residue was purified by flash silica gel chromatography (30% EtOAc/hexane) to afford **3d** (126 mg, 90%) as a colorless oil; $[\alpha]_D^{25}$ = -38.2 (*c* 0.55, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.31 (dd, 2H, *J* = 3.0, 5.2 Hz, Ar<u>H</u>), 7.18 (dd, 2H *J* = 2.1, 6.8 Hz, Ar<u>H</u>), 6.89 (dd, 2H, *J* = 3.1, 5.1 Hz, Ar<u>H</u>), 6.77 (dd, 2H, *J* = 2.3, 6.8 Hz, Ar<u>H</u>), 4.71 (dd, 1H, *J* = 1.9, 9.6 Hz, C<u>H</u>NH), 3.80 (s, 3H, O<u>Me</u>), 3.73 (s, 3H, O<u>Me</u>), 2.02-1.94 (m, 3H, C<u>H</u>CH₃, N<u>H</u>₂), 0.96 (d, 3H, *J* = 6.9 Hz, C<u>H</u>₃CH), 0.81(d, 3H, *J* = 6.9 Hz, C<u>H</u>₃CH); ¹³C NMR (75 MHz, CDCl₃): δ_C 158.5, 158.4, 157.1 (q, *J* = 36.6, -CF₃), 138.4, 137.7, 127.9, 113.9, 113.8, 64.7, 58.8, 55.4, 55.3, 29.2, 23.6, 17.8; FT-IR: 3336, 3234 cm⁻¹; EI-HRMS calc. for C₂₁H₂₅F₃N₂O₃ [M]⁺ 410.1837, found 410.1838.

(S)- N²-Tosyl-1,1,2-triphenylethane-1,2-diamine (3g)

White solid (179 mg, 81%); mp: 212 °C; $[\alpha]_D^{25}$ = -13.9 (*c* 0.51, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.52 (d, 2H, *J* = 6.6 Hz, Ar<u>H</u>), 7.36-7.23 (m, 7H, Ar<u>H</u>), 7.11-7.05 (m, 2H, Ar<u>H</u>), 6.98-6.87 (m, 4H, Ar<u>H</u>), 6.83-6.74 (m, 2H, Ar<u>H</u>), 6.54 (d, 2H, *J* = 7.5 Hz, Ar<u>H</u>), 5.77 (d, 1H, *J* = 7.5 Hz, N<u>H</u>Ts), 5.40 (d, 1H, *J* = 7.5 Hz, C<u>H</u>NH), 2.27 (s, 3H, ArC<u>H₃</u>), 1.94 (brs, 2H, N<u>H</u>₂); ¹³C NMR (75 MHz, CDCl₃): δ_C 145.6, 144.5, 142.5, 137.8, 135.7, 128.9, 128.8, 128.6, 127.9, 127.6, 127.2, 127.1, 127, 126.8, 126.7, 64.9, 62.8, 21.3; FT-IR (neat): 3103, 2931 cm⁻¹; EI-HRMS calc. for C₂₇H₂₆N₂O₂S [M]⁺ 442.1715, found 442.1738.

(S)- N^2 -Benzyloxycarbonyl-1,1,3-triphenylpropane-1,2-diamine (3h)

Ph NH₂ NHCbz

A solution of **2h** (158 mg, 0.34 mmol) in THF (8 mL) was added to a well stirred suspension of LAH (16 mg, 0.42 mmol) in THF (2 mL), and then the mixture was stirred for 30 min at room temperature. Ethyl acetate (2 mL) was carefully introduced to consume the excess reagent and the reaction was quenched with ice-cold water (5 mL). The solution was extracted with EtOAc (3 x 10 mL) and the combined organic layer was washed with brine, dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to give a residue. The crude residue was purified by flash silica gel chromatography (15% EtOAc/hexane) to afford **3h** (101 mg, 68%) as a white solid; mp: 129 °C; $[\alpha]_D^{21}$ = -10.8 (*c* 0.25, CHCl₃); ¹HNMR (300 MHz, CDCl₃): δ_H 7.50-7.09 (m, 20H, Ar<u>H</u>), 5.19 (d, 1H, *J* = 10.1 Hz, N<u>H</u>CO), 4.97-4.79 (m, 3H, C<u>H</u>NH, ArC<u>H</u>₂O), 2.93 (dd, 1H, *J* = 1.9, 13.8 Hz, C<u>H</u>₂CH), 2.39-2.32 (m, 1H, C<u>H</u>₂CH), 1.84 (brs, 2H, N<u>H</u>₂); ¹³C NMR (75 MHz, CDCl₃): δ_C 156, 146.5, 145.8, 138.6, 136.9, 129.3, 128.5, 128.4, 128.3, 128.3, 127.9, 126.9, 126.8, 126.7, 126.4, 66.3, 65.1, 58.2, 37.9; FT-IR: 2104 cm⁻¹; EI-HRMS calc. for C₂₉H₂₈N₂O₂[M]⁺ 436.2151, found 436.2155.

(S)-diphenyl (1-tosylpyrrolidin-2-yl)methanamine (3i)

White solid (169 mg, 83%); mp 150 °C; $[\alpha]_D^{25}$ = -90.1 (*c* 0.49, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.75 (d, 2H, *J* = 8.4 Hz, Ar<u>H</u>), 7.38-7.21 (m, 12H, Ar<u>H</u>), 4.82 (dd, 1H, *J* = 2.6, 8.9 Hz, C<u>H</u>NH), 3.31-3.22 (m, 1H, C<u>H</u>₂NTs), 2.52-2.04 (m, 1H, C<u>H</u>₂NTs), 2.44 (s, 3H, ArC<u>H</u>₃), 1.86 (brs, 2H, N<u>H</u>₂), 1.81-1.65 (m, 2H, C<u>H</u>₂CH₂), 1.25-1.05 (m, 1H, C<u>H</u>₂CH₂), 0.63-0.54 (m, 1H, C<u>H</u>₂CH₂); ¹³C NMR (75 MHz, CDCl₃): δ_C 146.7, 144.3, 143.6, 135.4, 129.7, 128.6, 128, 127.6, 127.4, 126.9, 126.8, 69.2, 64.4, 49.7, 28.9, 23.4, 21.5; FT-IR:

3345, 2957 cm⁻¹; EI-HRMS calc. for C₂₄H₂₆N₂O₂S [M]⁺ 406.1715, found 406.1711;

(S)-1,1-diphenylpropane-1,2-diamine² (6a)

obtained as white solid (93.8 mg, 83%); $[\alpha]_D^{27} = +12.21$ (*c* 1.05, CHCl₃); lit.² $[\alpha]_D^{27} +12.8$ (*c* 1.05, CHCl₃); mp: 126.5-127.5 °C; ¹H NMR (300 MHz, CDCl₃): δ_H 7.73 (dd, J = 1.3, 8.5 Hz, 2H, Ar<u>H</u>), 7.48 (dd, J = 1.3, 8.6 Hz, 2H, Ar<u>H</u>), 7.32-7.26 (m, 4H, Ar<u>H</u>), 7.20-7.15 (m, 2H, Ar<u>H</u>), 4.05 (q, J = 6.3 Hz, 1H, C<u>H</u>NH), 1.52 (brs, 4H, N<u>H</u>₂), 1.00 (d, J = 6.3 Hz, 3H, C<u>H</u>₃CH); ¹³C NMR (75 MHz, CDCl₃): δ_C 147.3, 146.6, 128.5, 128.2, 126.8, 126.7, 126.5, 126.4 64.5, 52.3, 18.0 ppm; IR (KBr): 3465, 3336, 3270, 3057, 2975, 2935, 1966, 1594, 1490, 1443 cm⁻¹; FABMS: *m/z* 227 [M+H]⁺; EI-HRMS calc. for C₁₅H₁₈N₂ [M]⁺ 226.1470, found 227.1474; Anal.Calc. for C₁₅H₁₈N₂: C, 79.61; H, 8.02; N, 12.38. Found C, 75.64; H, 7.65; N, 11.51.

(S)-3-methyl-1,1-diphenylbutane-1,2-diamine (6b)

White solid (105 mg, 83%); mp 87 °C; $[\alpha]_D^{25}$ = +13.3 (*c* 0.47, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.50-7.43 (m, 4H, Ar<u>H</u>), 7.29-7.23 (m, 4H, Ar<u>H</u>), 7.20-7.13 (m, 2H, Ar<u>H</u>), 3.67 (d, 1H, *J* = 0.5 Hz, C<u>H</u>NH), 1.92-1.81 (m, 1H, C<u>H</u>CH₃), 1.57 (brs, 4H, N<u>H</u>₂), 0.98 (d, 3H, *J* = 6.9 Hz, C<u>H</u>₃CH), 0.74 (d, 3H, *J* = 6.9 Hz, C<u>H</u>₃CH); ¹³C NMR (75 MHZ, CDCl₃): δ_C 147.9, 147.2, 128.4, 128.3, 128.2, 127.5, 127.5, 126.7, 126.3, 65.8, 60.8, 28.0, 24.1, 17.1; FT-IR: 3334, 2932 cm⁻¹ ESI-LC/MS *m/z* 255 [M+H]⁺, 239, 238, 237.

(S)-1,1,2-triphenylethane-1,2-diamine (6c)

obtained as colourles oil (102.6 mg, 71.3%); $[\alpha]_D^{25} = -120.6$ (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.73 (dd, J = 1.2, 7.7 Hz, 2H, Ar<u>H</u>), 7.43-7.38 (m, 2H, Ar<u>H</u>), 7.31-7.11 (m, 9H, Ar<u>H</u>), 7.06-7.03 (dd, J = 1.4, 7.6 Hz, 2H, Ar<u>H</u>), 5.11(s, 1H, C<u>H</u>N), 1.87(brs, 4H, N<u>H</u>₂) ppm; ¹³C NMR (75 MHz, CDCl₃): δ_C 146.1, 145.8, 140.8, 128.8, 128.3 127.7, 127.4, 127.2, 126.8, 126.2, 65.1, 62.0 ppm; FT-IR: 3341, 3251 cm⁻¹; FABMS: m/z 289 [M+H]⁺; EI-HRMS calc. for C₂₀H₂₀N₂ [M]⁺ 288.1626, found 288.1635

(S)-1,1,2-triphenyl-2-(piperidin-1-yl)ethanamine (6d)

obtained as white solid (110.2 mg, 61.8%); $[\alpha]_D^{25} = +46.6$ (*c* 1.0, CHCl₃); mp: 141.5-142.5 °C; ¹H NMR (300 MHz, CDCl₃): δ_H 7.59 (d, J = 7.9 Hz, 1H, Ar<u>H</u>), 7.56 (d, J = 7.9 Hz, 1H, Ar<u>H</u>), 7.28-7.23 (m, 7H, Ar<u>H</u>), 7.17-7.00 (m, 6H, Ar<u>H</u>), 4.43 (s, 1H, C<u>H</u>Ar), 2.53 (q, J = 7.9 Hz, 2H, C<u>H</u>₂N), 2.26 (brs, 2H, N<u>H</u>₂), 2.03-1.93 (m, 2H, C<u>H</u>₂N), 1.47-1.39 (m. 4H, C<u>H</u>₂CH₂, C<u>H</u>₂CH₂), 1.30-1.21 (m, 2H, C<u>H</u>₂CH₂); ¹³C NMR (75 MHz, CDCl₃): δ_C 149.9, 147.0, 138.3, 131.1, 127.8, 127.6, 127.5, 127.4, 126.5, 126.1, 125.9, 77.3, 65.3, 54.9, 27.1, 24.6 ppm; IR (KBr, cm⁻¹): 3367, 3303, 3082, 3058, 2931, 2849, 2788, 1952, 1492, 1467; FABMS: *m/z* 357 [M+H]⁺; EI-HRMS calc. for C₂₅H₂₈N₂ [M]⁺ 356.2252, found 356.2242; Anal.Calcd for C₂₅H₂₈N₂: C, 84.23; H, 7.92; N, 7.86. Found C, 83.51; H, 7.59; N, 7.52.

(S)-1,1,3-triphenylpropane-1,2-diamine³ (6e)

White solid (127 mg, 84%); mp: 139 °C; ; $[\alpha]_D^{22}$ = -10.8 (*c* 0.25, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.63-7.57 (m, 5H, Ar<u>H</u>), 7.37-7.15 (m, 10H, Ar<u>H</u>), 4.16-4.09 (m, 1H, C<u>H</u>N), 2.85 (dd, 1H, *J* = 1.5, 12 Hz, C<u>H</u>₂CH), 2.34-2.26 (m, 1H, C<u>H</u>₂CH), 1.65 (brs, 4H, N<u>H</u>₂); ¹³C NMR (75 MHz, CDCl₃): δ_C 147.1, 146.3, 140.4, 129.2, 128.7, 128.5, 128.5, 126.5, 126.4, 64.2, 59.1, 38.2; FT-IR: 3449, 3344, 3296, 1598, 1492 cm⁻¹; ESI-LC/MS *m*/*z* 303 [M+H]⁺, 287, 286, 285.

(S)-diphenyl(pyrrolidin-2-yl)methanamine⁴ (6f)

To a solution of **5f** (100 mg, 0.35 mmol) in toluene (5 mL) was added triphenylphosphine (364 mg, 1.38 mmol). The reaction mixture was stirred at 60 °C for 2 h. Then H₂O (2 mL) was added and the mixture was stirred at room temperature for 30 min. The reaction mixture was extracted with EtOAc (3 x 5 mL) and the combined organic layer was washed with brine, dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to give a residue. The crude residue was purified by flash silica gel chromatography (10% MeOH/CHCl₃) to afford **6f** (65 mg, 73%) as light brown liquid; $[\alpha]_D^{25} = -35.43$ (*C* = 1.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_H 7.58 (d, 2H, *J* = 7.4 Hz, NH₂), 7.37-7.21 (m, 10H, ArH), 4.68 (dd, *J* = 3.7, 7.4 Hz, 1H, CHN), 3.11 (m, 1H, CH₂N), 2.91 (m, 1H, CH₂N), 1.87-1.77 (m, 4H, CH₂CH₂CH₂CH) ppm; ¹³C NMR (75 MHz, CDCl₃ + DMSO-*d*₆): δ_C 145.4, 144.7, 128.9, 128.5, 127.2, 127.1, 126.7, 125.9, 65.0, 62.4, 47.0, 27.3, 24.6 ppm; IR (KBr): 3441, 3250, 2961, 2924, 2806, 1960, 1647, 1491, 1448, 1389 cm⁻¹; FABMS: *m/z* 253 [M+H]⁺; EI-HRMS calc. for C₁₇H₂₀N₂ [M]⁺ 252.1626, found 252.1625.

References

- 1. Shi, Z.; Tan, B.; Leong, W. W. Y.; Zeng, X.; Lu, M.; Zhong, G. Org. Lett. 2010, 12, 5401.
- 2. Kohmura, Y.; Mase, T. J. Org. Chem. 2004, 69, 6329.
- 3. Brunner, H.; Hankofer, P.; Treittinger, B. Chem, Ber. 1990, 123, 1029.
- 4. Olivares-Romero, J. L.; Juaristi, E. Tetrahedron 2008, 64, 9992.

$$N \rightarrow H^{Ph} H^{N_3}$$
 (2a)

SpinWorks 2.4: LR_PyroAzide_7

number of scans: 1024

SpinWorks 2.4: LR_Ethyldp_Azide

SpinWorks 2.4: LR_Ethyldp_Azide

LR_Me_Ts_dpazide

SpinWorks 2.4: LR_79_Azide_3

РРМ

160.0

ministrator\Desktop\LR_79_Azide_3\2\fid expt: 75.475295 MHz : 65536 points Hz = 238.297995 ppm = 0.274439 Hz/pt : 1024

150.0

140.0

130.0

120.0

110.0

100.0

80.0

70.0

freq. of 0 ppm: 75.467749 MHz processed size: 32768 complex points LB: 1.000 GB: 0.0000 60.0

50.0

40.0

30.0

20.0

10.0

0.0

90.0

SpinWorks 2.4: LR_Ts_diome_7

SpinWorks 2.4: LR_Ts_TP_Azide

SpinWorks 2.4: LR_CBZ_azide_7

4190 Hz/p

$$\bigvee_{\substack{N \\ T_{s} \\ N_{3}}} \stackrel{Ph}{\underset{N_{3}}{Ph}} (2i)$$

Ph NH₂ NHTs (3c)

LR_Me_dp_Ts_Amine

SpinWorks 2.4: LR_Isoprop_Ts_Amine

SpinWorks 2.4: LR_TriF_Amine

SpinWorks 2.4: LR_TriF_Amine

SpinWorks 2.4: LR_Ts_TP_Amine

SpinWorks 2.4: LR_Ts_TP_Amine

SpinWorks 2.4: LR_Cbz_Amine

SpinWorks 2.4: LR_Cbz_Amine

time di width numbe

SpinWorks 2.4: LR_Pyro_Ts_Amine

SpinWorks 2.4: LR_Me_TP_Azide

transmi time do width

SpinWorks 2.4: LR_21b

SpinWorks 2.4: LR_16_Azide

SpinWorks 2.4: APT_FPYAZIDE

SpinWorks 2.4: APT_FPYAZIDE

SpinWorks 2.4: LR_CBZ_Azide

SpinWorks 2.4: LR_9_2_Azide

$$\bigvee_{H}^{Ph}_{N_3}^{Ph}$$

SpinWorks 2.4: APT_03_84B

SpinWorks 2.4: APT_03_84B

Ph NH₂ Ph-^{`NH}² (6a)

SpinWorks 2.4: APT_phmlamine

SpinWorks 2.4: APT_phmlamine

5.61 F

SpinWorks 2.4: LR_Isoprop_diamine

SpinWorks 2.4: APT_FTPAMiNE

time domain width: 6172

SpinWorks 2.4: APT_FTPAMiNE

SpinWorks 2.4: APT_FNPRD2

SpinWorks 2.4: LR_11_diamine

