"Click" chemistry toward *bis*(DOTA-derived) heterometallic complexes: potential bimodal MRI/PET(SPECT) molecular probes.

Mojmír Suchý,^{*a,b*} Robert Bartha^{*b*} and Robert H. E. Hudson^{*a*}

^aDepartment of Chemistry, The University of Western Ontario, London, Ontario, Canada ^bRobarts Research Institute, The University of Western Ontario, London, Ontario, Canada

Contents:

Figure S1: ¹ H NMR spectrum (CDCl ₃) of compound 6a	S5
Figure S2: ¹ H NMR spectrum (CDCl ₃) of an unmetallated version of complex 6b	S6
Figure S3: ¹ H NMR spectrum (CDCl ₃) of compound 7a	S7
Figure S4: ¹ H NMR spectrum (D ₂ O) of an ester deprotected version of ligand 7a	S8
Figure S5: ¹ H NMR spectrum (CDCl ₃) of compound 12	S9
Figure S6: ¹ H NMR spectrum (CDCl ₃) of compound 15	S10
Figure S7: ¹³ C NMR spectrum (CDCl ₃) of compound 12	S11
Figure S8: ¹³ C NMR spectrum (CDCl ₃) of compound 12 , an expansion of the aromatic	
carbon region	S11
Figure S9: ¹³ C NMR spectrum (CDCl ₃) of compound 15	S12
Figure S10: HR-ESI-MS spectrum of compound 5a showing a proper charge state	
envelope	S13
Figure S11: HR-ESI-MS spectrum of compound 5a, M ²⁺ charge state observed	
(bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the	
presence of heavy metals.	S13
Figure S12 : HR-ESI-MS spectrum of compound 5a . M^{3+} charge state observed	
(bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the	
presence of heavy metals	S14
Figure S13 . UPLC chromatograms (Method B) of compound 5a MS detector	
(bottom). UV detector (top).	
Figure S14 . HR-ESI-MS spectrum of compound 5b showing a proper charge state	
envelone	S15
Figure S15 . HR-ESI-MS spectrum of compound 5b M^{2+} charge state observed	
(bottom) spectrum and calculated (top) spectrum note the isotope pattern due to the	
presence of heavy metals	S15
Figure S16 . HR-ESI-MS spectrum of compound 5b M^{3+} charge state observed	
(bottom) spectrum and calculated (top) spectrum note the isotope pattern due to the	
presence of heavy metals	S16
Figure S17 . UPLC chromatograms (Method B) of compound 5b MS detector	
(hottom) UV detector (ton)	S16
Figure S18 : UPLC chromatograms (Method B) of compound 5d MS detector	
(hottom) UV detector (ton)	S17
Figure S19: HR-FSI-MS spectrum of compound 6a showing a proper charge state	
envelone	S17
Figure S20 : HR-ESI-MS spectrum of compound 6a M^+ charge state observed (bottom)	
spectrum and calculated (ton) spectrum	S18
Figure S21: HR-FSLMS spectrum of compound 69 M^{2+} charge state observed	
(bottom) spectrum and calculated (ton) spectrum	S18
Figure S22: UPLC chromatograms (Method B) of compound 6a MS detector	
(hottom) IIV detector (ton)	S19
Figure \$23: HR-FSI-MS spectrum of compound 6b showing a proper charge state	
envelope	\$10
Figure S24 : HR-ESI-MS spectrum of compound 6b M^+ charge state observed (bottom)	
spectrum and calculated (ton) spectrum	\$20
spectrum and calculated (top) spectrum.	

Figure S25: HR-ESI-MS spectrum of compound 6b, M ²⁺ charge state observed	
(bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the	
presence of Gd.	S20
Figure S26: UPLC chromatograms (Method B) of compound 6b, MS detector	
(bottom), UV detector (top).	S21
Figure S27: HR-ESI-MS spectrum of compound 7a showing a proper charge state	
envelope	S21
Figure S28 : HR-ESI-MS spectrum of compound 7a , M^+ charge state observed (bottom)	
spectrum and calculated (top) spectrum.	S22
Figure S29: UPLC chromatogram (Method B) of compound 7a. MS detector.	
Compound 7a does not contain a suitable chromophore to allow for the UV detection	S22
Figure S30 : HR-ESI-MS spectrum of the ester deprotected version of compound 7a	
showing a proper charge state envelope.	S23
Figure S31 : HR-ESI-MS spectrum of the ester deprotected version of compound 7a.	
M^{+} charge state observed (bottom) spectrum and calculated (top) spectrum.	
Figure S32 : UPLC chromatogram (Method B) of the ester deprotected version of	
compound 7a MS detector	S24
Figure S33 HR-ESI-MS spectrum of compound 7b showing a proper charge state	
envelone	S24
Figure S34 . HR-ESI-MS spectrum of compound 7b M^+ charge state observed (bottom)	
spectrum and calculated (top) spectrum note the isotope pattern due to the presence of	
Cu^{2^+}	S25
Figure S35 . HR-ESI-MS spectrum of compound 7b M^{2+} charge state observed	
(bottom) spectrum and calculated (top) spectrum note the isotope pattern due to the	
presence of Cu^{2+}	S25
Figure S36 . UPLC chromatogram (Method B) of compound 7b MS detector	S26
Figure S37. HR-ESI-MS spectrum of compound 7c	S26
Figure S38 : HR-ESI-MS spectrum of compound 7c. M^+ charge state observed (bottom)	
spectrum and calculated (top) spectrum	S27
Figure S39 : UPLC chromatogram (Method B) of compound 7c . MS detector.	
Figure S40: HR-ESI-MS spectrum of compound 7d showing a proper charge state	
envelope	
Figure S41 : HR-ESI-MS spectrum of compound 7d . M ⁺ charge state observed (bottom)	
spectrum and calculated (top) spectrum	S28
Figure S42 . HR-ESI-MS spectrum of compound 7d M^{2+} charge state observed	
(bottom) spectrum and calculated (top) spectrum	S29
Figure S43: UPLC chromatogram (Method B) of compound 7d MS detector	S29
Figure S44 . HR-ESI-MS spectrum of compound 13 showing a proper charge state	
envelone	\$30
Figure S45 . HR-ESI-MS spectrum of compound 13 M ⁺ charge state observed (bottom)	
spectrum and calculated (top) spectrum	S 30
Figure S46 . HR-ESI-MS spectrum of compound 13 M^{2+} charge state observed	
(bottom) spectrum and calculated (top) spectrum	S31
Figure S47 : UPLC chromatograms (Method B) of compound 13 MS detector	
(hottom) UV detector (ton)	S31

Figure S48: HR-ESI-MS spectrum of DO3A-OtBu-Ac 2-chloroethylamine showing a	
proper charge state envelope	S32
Figure S49 : HR-ESI-MS spectrum of DO3A- <i>Ot</i> Bu-Ac 2-chloroethylamine, M ⁺ charge	
state observed (bottom) spectrum and calculated (top) spectrum	S32
Figure S50 : HR-ESI-MS spectrum of DO3A- <i>Ot</i> Bu-Ac 2-chloroethylamine, M ²⁺ charge	
state observed (bottom) spectrum and calculated (top) spectrum	S33
Figure S51: HPLC chromatogram (Method A) obtained during the semi-preparative	
purification of crude reaction mixture containing the Gd^{3+}/Cu^{2+} heterometallic complex	
5a ($t_{\rm R}$ 8.5 min)	S34
Figure S52: HPLC chromatogram (Method A) obtained during the semi-preparative	
purification of crude reaction mixture containing the Gd^{3+}/Ga^{3+} heterometallic complex	
5b ($t_{\rm R}$ 7.8 min)	S34
Figure S53: HPLC chromatogram (Method A) obtained during the semi-preparative	
purification of crude reaction mixture containing the Gd^{3+}/In^{3+} heterometallic complex	
5c ($t_{\rm R}$ 8.5 min)	S35
Figure S54: Dependence of T_1 relaxation time on the magnetic field strength for the	
Gd ³⁺ /Cu ²⁺ heterometallic complex 5a , acquired at 25 °C	S36
Figure S55: Dependence of T_1 relaxation time on the magnetic field strength for the	
Gd^{3+}/Cu^{2+} heterometallic complex 5a , acquired at 37 °C	S36
Figure S56: Dependence of T_1 relaxation time on the magnetic field strength for the	
Gd ³⁺ /Ga ³⁺ heterometallic complex 5b , acquired at 25 °C	S37
Figure S57: Dependence of T_1 relaxation time on the magnetic field strength for the	
Gd ³⁺ /Ga ³⁺ heterometallic complex 5b , acquired at 37 °C	S37
Figure S58: Dependence of T_1 relaxation time on the magnetic field strength for the	
Gd ³⁺ /In ³⁺ heterometallic complex 5c, acquired at 25 °C.	S38
Figure S59: Dependence of T_1 relaxation time on the magnetic field strength for the	
Gd ³⁺ /In ³⁺ heterometallic complex 5c, acquired at 37 °C.	S38
Figure S60 : Dependence of T_1 relaxation time on the magnetic field strength for the	
alkyne building block 6b , acquired at 25 °C.	S39
Figure S61: Dependence of T_1 relaxation time on the magnetic field strength for the	
alkyne building block 6b , acquired at 37 °C.	S39
Figure S62 : Dependence of T_1 relaxation time on the magnetic field strength for the	
commercial MRI contrast agent Dotarem (16), acquired at 25 °C	S40
Figure S63 : Dependence of T_1 relaxation time on the magnetic field strength for the	
commercial MRI contrast agent Dotarem (16), acquired at 37 °C	S40
Figure S64: Dependence of R_1 relaxivity on the magnetic field strength for the	
Gd^{3+}/Cu^{2+} heterometallic complex 5 <i>a</i> , acquired at 25 °C	S41
Figure S65: Dependence of R_1 relaxivity on the magnetic field strength for the	
Gd ³⁺ /Cu ²⁺ heterometallic complex 5 <i>a</i> , acquired at 37 °C	S41
Figure S66: Dependence of R_1 relaxivity on the magnetic field strength for the	
Gd ³⁺ /Ga ³⁺ heterometallic complex 5b , acquired at 25 °C.	S42
Figure S67: Dependence of R_1 relaxivity on the magnetic field strength for the	
Gd ³⁺ /Ga ³⁺ heterometallic complex 5b , acquired at 37 °C.	S42
Figure S68: Dependence of R_1 relaxivity on the magnetic field strength for the	
Gd ³⁺ /In ³⁺ heterometallic complex 5c, acquired at 25 °C. Related NMRD profile	
acquired at 37 °C is shown in the body of the paper (Figure 5).	S43

Figure S69 : Dependence of R ₁ relaxivity on the magnetic field strength for the alkyne	
building block 6b , acquired at 25 °C.	S43
Figure S70 : Dependence of R ₁ relaxivity on the magnetic field strength for the alkyne	
building block 6b , acquired at 37 °C.	S44
Figure S71: Dependence of R_1 relaxivity on the magnetic field strength for the	
commercial MRI contrast agent Dotarem (16), acquired at 25 °C. Related NMRD	
profile acquired at 37 °C is shown in the body of the paper (Figure 5)	S44

S6

S10

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

region.

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

Figure S10: HR-ESI-MS spectrum of compound 5a showing a proper charge state envelope.

Figure S11: HR-ESI-MS spectrum of compound 5a, M^{2+} charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of heavy metals.

Figure S12: HR-ESI-MS spectrum of compound **5a**, M^{3+} charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of heavy metals.

Figure S13: UPLC chromatograms (Method B) of compound **5a**, MS detector (bottom), UV detector (top).

Figure S14: HR-ESI-MS spectrum of compound 5b showing a proper charge state envelope.

Figure S15: HR-ESI-MS spectrum of compound **5b**, M^{2+} charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of heavy metals.

Figure S16: HR-ESI-MS spectrum of compound **5b**, M^{3+} charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of heavy metals.

Figure S17: UPLC chromatograms (Method B) of compound **5b**, MS detector (bottom), UV detector (top).

Figure S18: UPLC chromatograms (Method B) of compound **5d**, MS detector (bottom), UV detector (top). The remaining MS data for compound **5d** are shown in the body of the paper (Figure 2). **Mojmir 67**

Figure S19: HR-ESI-MS spectrum of compound **6a** showing a proper charge state envelope. The *t*-Bu ester functionalities present in **6a** are not stable under the conditions of the analysis therefore M^+ -56, M^+ -112 and M^+ -168 ions are observed for the singly charged species and M^+ -28, M^+ -56 and M^+ -84 ions are observed for the doubly charged species.

Figure S20: HR-ESI-MS spectrum of compound 6a, M⁺ charge state observed (bottom) spectrum and calculated (top) spectrum.

Figure S21: HR-ESI-MS spectrum of compound 6a, M^{2+} charge state observed (bottom) spectrum and calculated (top) spectrum.

Figure S22: UPLC chromatograms (Method B) of compound 6a, MS detector (bottom), UV detector (top).

Mojmir44

Figure S23: HR-ESI-MS spectrum of compound 6b showing a proper charge state envelope.

Figure S24: HR-ESI-MS spectrum of compound **6b**, M^+ charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of Gd.

Figure S25: HR-ESI-MS spectrum of compound **6b**, M^{2+} charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of Gd.

Figure S26: UPLC chromatograms (Method B) of compound **6b**, MS detector (bottom), UV detector (top).

Figure S27: HR-ESI-MS spectrum of compound 7a showing a proper charge state envelope. The *t*-Bu ester functionalities present in 7a are not stable under the conditions of the analysis therefore M^+ -56, M^+ -112 and M^+ -168 ions are observed for the singly charged species and M^+ -28, M^+ -56 and M^+ -84 ions are observed for the doubly charged species.

Figure S28: HR-ESI-MS spectrum of compound 7a, M^+ charge state observed (bottom) spectrum and calculated (top) spectrum.

Figure S29: UPLC chromatogram (Method B) of compound 7a, MS detector. Compound 7a does not contain a suitable chromophore to allow for the UV detection.

Figure S30: HR-ESI-MS spectrum of the ester deprotected version of compound 7a showing a proper charge state envelope.

Figure S31: HR-ESI-MS spectrum of the ester deprotected version of compound 7a, M^+ charge state observed (bottom) spectrum and calculated (top) spectrum.

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Figure S32: UPLC chromatogram (Method B) of the ester deprotected version of compound **7a**, MS detector. Compound does not contain a suitable chromophore to allow for the UV detection.

Mojmir 18

Figure S33: HR-ESI-MS spectrum of compound 7b showing a proper charge state envelope.

Figure S34: HR-ESI-MS spectrum of compound **7b**, M^+ charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of Cu. **Moimir 18**

Figure S35: HR-ESI-MS spectrum of compound **7b**, M^{2+} charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of Cu.

Figure S36: UPLC chromatogram (Method B) of compound **7b**, MS detector. Compound **7b** does not contain a suitable chromophore to allow for the UV detection.

Figure S37: HR-ESI-MS spectrum of compound 7c.

Figure S38: HR-ESI-MS spectrum of compound 7c, M^+ charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of Ga.

Figure S39: UPLC chromatogram (Method B) of compound 7c, MS detector. Compound 7c does not contain a suitable chromophore to allow for the UV detection.

Figure S40: HR-ESI-MS spectrum of compound 7d showing a proper charge state envelope.

Figure S41: HR-ESI-MS spectrum of compound 7d, M^+ charge state observed (bottom) spectrum and calculated (top) spectrum, note that In only possesses one stable isotope.

Figure S42: HR-ESI-MS spectrum of compound **7d**, M^{2+} charge state observed (bottom) spectrum and calculated (top) spectrum, note that In only possesses one stable isotope.

Figure S43: UPLC chromatogram (Method B) of compound 7d, MS detector. Compound 7d does not contain a suitable chromophore to allow for the UV detection.

Figure S44: HR-ESI-MS spectrum of compound 13 showing a proper charge state envelope. The *t*-Bu ester functionalities present in 13 are not stable under the conditions of the analysis therefore M^+ -56, M^+ -112 and M^+ -168 ions are observed for the singly charged species and M^+ -28, M^+ -56 and M^+ -84 ions are observed for the doubly charged species.

Figure S45: HR-ESI-MS spectrum of compound **13**, M⁺ charge state observed (bottom) spectrum and calculated (top) spectrum.

Figure S46: HR-ESI-MS spectrum of compound 13, M^{2+} charge state observed (bottom) spectrum and calculated (top) spectrum.

Figure S47: UPLC chromatograms (Method B) of compound **13**, MS detector (bottom), UV detector (top).

Figure S48: HR-ESI-MS spectrum of DO3A-*Ot*Bu-Ac 2-chloroethylamine showing a proper charge state envelope. The *t*-Bu ester functionalities present in this intermediate are not stable under the conditions of the analysis therefore M^+ -56, M^+ -112 and M^+ -168 ions are observed for the singly charged species and M^+ -28, M^+ -56 and M^+ -84 ions are observed for the doubly charged species. Mojmir 6

Figure S49: HR-ESI-MS spectrum of DO3A-OtBu-Ac 2-chloroethylamine, M⁺ charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of Cl.

Figure S50: HR-ESI-MS spectrum of DO3A-OtBu-Ac 2-chloroethylamine, M^{2+} charge state observed (bottom) spectrum and calculated (top) spectrum, note the isotope pattern due to the presence of Cl.

Figure S51: HPLC chromatogram (Method A) obtained during the semi-preparative purification of crude reaction mixture containing the Gd^{3+}/Cu^{2+} heterometallic complex **5a** (t_R 8.5 min).

Figure S52: HPLC chromatogram (Method A) obtained during the semi-preparative purification of crude reaction mixture containing the Gd^{3+}/Ga^{3+} heterometallic complex **5b** (t_R 7.8 min).

Figure S53: HPLC chromatogram (Method A) obtained during the semi-preparative purification of crude reaction mixture containing the Gd^{3+}/In^{3+} heterometallic complex **5c** (t_R 8.5 min).

Figure S54: Dependence of T_1 relaxation time on the magnetic field strength for the Gd^{3+}/Cu^{2+} heterometallic complex **5a**, acquired at 25 °C.

Figure S55: Dependence of T_1 relaxation time on the magnetic field strength for the Gd^{3+}/Cu^{2+} heterometallic complex **5a**, acquired at 37 °C.

Figure S56: Dependence of T_1 relaxation time on the magnetic field strength for the Gd^{3+}/Ga^{3+} heterometallic complex **5b**, acquired at 25 °C.

Figure S57: Dependence of T_1 relaxation time on the magnetic field strength for the Gd^{3+}/Ga^{3+} heterometallic complex **5b**, acquired at 37 °C.

Figure S58: Dependence of T_1 relaxation time on the magnetic field strength for the Gd^{3+}/In^{3+} heterometallic complex **5c**, acquired at 25 °C.

Figure S59: Dependence of T_1 relaxation time on the magnetic field strength for the Gd^{3+}/In^{3+} heterometallic complex **5c**, acquired at 37 °C.

Figure S60: Dependence of T_1 relaxation time on the magnetic field strength for the alkyne building block **6b**, acquired at 25 °C.

Figure S61: Dependence of T_1 relaxation time on the magnetic field strength for the alkyne building block **6b**, acquired at 37 °C.

Figure S62: Dependence of T_1 relaxation time on the magnetic field strength for the commercial MRI contrast agent Dotarem (16), acquired at 25 °C.

Figure S63: Dependence of T_1 relaxation time on the magnetic field strength for the commercial MRI contrast agent Dotarem (16), acquired at 37 °C.

Figure S64: Dependence of R_1 relaxivity on the magnetic field strength for the Gd^{3+}/Cu^{2+} heterometallic complex **5a**, acquired at 25 °C.

Figure S65: Dependence of R_1 relaxivity on the magnetic field strength for the Gd^{3+}/Cu^{2+} heterometallic complex **5a**, acquired at 37 °C.

Figure S66: Dependence of R_1 relaxivity on the magnetic field strength for the Gd^{3+}/Ga^{3+} heterometallic complex **5b**, acquired at 25 °C.

Figure S67: Dependence of R_1 relaxivity on the magnetic field strength for the Gd^{3+}/Ga^{3+} heterometallic complex **5b**, acquired at 37 °C.

Figure S68: Dependence of R_1 relaxivity on the magnetic field strength for the Gd^{3+}/In^{3+} heterometallic complex **5c**, acquired at 25 °C. Related NMRD profile acquired at 37 °C is shown in the body of the paper (Figure 5).

Figure S69: Dependence of R_1 relaxivity on the magnetic field strength for the alkyne building block **6b**, acquired at 25 °C.

Figure S70: Dependence of R_1 relaxivity on the magnetic field strength for the alkyne building block **6b**, acquired at 37 °C.

Figure S71: Dependence of R_1 relaxivity on the magnetic field strength for the commercial MRI contrast agent Dotarem (16), acquired at 25 °C. Related NMRD profile acquired at 37 °C is shown in the body of the paper (Figure 5)