## **Supplementary Materials**

# Enhanced catalytic performance by copper nanoparticle**graphene based composite** Paramita Mondal,<sup>a</sup> Arjyabaran Sinha,<sup>b</sup> Noor Salam,<sup>a</sup> Anupam Singha Roy,<sup>a</sup>

Nikhil R. Jana<sup>b,\*</sup> and S. M. Islam<sup>a,\*</sup>

<sup>[a]</sup>Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India. <sup>[b]</sup>Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032. India.

#### List of contents

#### (a) Tables

Table S1. Effect of copper source on the coupling of imidazole with iodobenzene.

Table S2. The effect of different reaction parameters on the Cu-G (13 % Cu) composite catalyzed O-arylation reaction of iodobenzene and phenol.<sup>a</sup>

Table S3. Screening of different solvents and bases for N-arylation of imidazole with iodobenzene.

### (b) Spectra of the products

#### (c) Characterization of reused Cu-G

Table S1. Effect of copper source on the coupling of imidazole with iodobenzene.

| Entry | Copper Source            | Yield (%)   |
|-------|--------------------------|-------------|
| 1     | None                     | No reaction |
| 2     | Cu-metal                 | 12          |
| 3     | CuI                      | 32          |
| 4     | CuCl <sub>2</sub>        | 29          |
| 5     | Cu(OAc) <sub>2</sub>     | 37          |
| 6     | Cu-G composite (6 % Cu)  | 72          |
| 7     | Cu-G composite (13 % Cu) | 98          |
| 8     | Cu-C composite (7 % Cu)  | 58          |
| 9     | Cu-C composite (14 % Cu) | 80          |

| Entry           | Solvent  | Base                            | Temp. ( <sup>0</sup> C) | Yield (%) <sup>b,c</sup> |
|-----------------|----------|---------------------------------|-------------------------|--------------------------|
| 1               | Methanol | $Cs_2CO_3$                      | reflux                  | 22                       |
| 2               | CAN      | Cs <sub>2</sub> CO <sub>3</sub> | 100                     | 34                       |
| 3               | DMF      | $Cs_2CO_3$                      | 100                     | 70                       |
| 4               | Toluene  | $Cs_2CO_3$                      | 100                     | 12                       |
| 5               | DMSO     | Cs <sub>2</sub> CO <sub>3</sub> | 100                     | 98                       |
| 6               | DMSO     | K <sub>2</sub> CO <sub>3</sub>  | 100                     | 78                       |
| 7               | DMSO     | K <sub>3</sub> PO <sub>4</sub>  | 100                     | 45                       |
| 8               | DMSO     | КОН                             | 100                     | 34                       |
| 9               | DMSO     | KOBu <sup>t</sup>               | 100                     | 23                       |
| 10              | DMSO     | Na <sub>2</sub> CO <sub>3</sub> | 100                     | 59                       |
| 11              | DMSO     | Et <sub>3</sub> N               | 100                     | 09                       |
| 12 <sup>d</sup> | DMSO     | $Cs_2CO_3$                      | Room temp.              | 14                       |
| 13              | DMSO     | $Cs_2CO_3$                      | 60                      | 47                       |

**Table S2.** The effect of different reaction parameters on the Cu-G (13 % Cu) composite catalyzed O-arylation reaction of iodobenzene and phenol.<sup>a</sup>

<sup>a</sup>Reaction conditions: Cu-G catalyst (0.05 g), iodobenzene (1 mmol); phenol (1 mmol); base (2 mmol); solvent (10 mL); Time (12 h) open air. <sup>b</sup>Yield determined by GC. <sup>c</sup>Products were identified by GC–MS. <sup>d</sup>Reaction time 24 h.

| Entry | Base                            | Solvent | Temperature ( <sup>0</sup> C) | Time (h) | Yield (%) <sup>b,c</sup> |
|-------|---------------------------------|---------|-------------------------------|----------|--------------------------|
| 1     | K <sub>2</sub> CO <sub>3</sub>  | DMSO    | 100                           | 7        | 89                       |
| 2     | Cs <sub>2</sub> CO <sub>3</sub> | DMSO    | 100                           | 7        | 94                       |
| 3     | K <sub>3</sub> PO <sub>4</sub>  | DMSO    | 100                           | 12       | 78                       |
| 4     | Et <sub>3</sub> N               | DMSO    | 100                           | 12       | 52                       |
| 5     | КОН                             | DMSO    | 100                           | 12       | 49                       |
| 6     | Cs <sub>2</sub> CO <sub>3</sub> | DMF     | 100                           | 7        | 84                       |
| 7     | Cs <sub>2</sub> CO <sub>3</sub> | NMP     | 100                           | 7        | 78                       |
| 8     | Cs <sub>2</sub> CO <sub>3</sub> | CAN     | 100                           | 7        | 70                       |
| 9     | Cs <sub>2</sub> CO <sub>3</sub> | THF     | 100                           | 12       | 32                       |
| 10    | Cs <sub>2</sub> CO <sub>3</sub> | Toluene | 100                           | 18       | 12                       |
| 11    | Cs <sub>2</sub> CO <sub>3</sub> | DMSO    | Room temp.                    | 24       | No reaction              |
| 12    | Cs <sub>2</sub> CO <sub>3</sub> | DMSO    | 50                            | 12       | 39                       |
| 13    | Cs <sub>2</sub> CO <sub>3</sub> | DMSO    | 70                            | 12       | 58                       |

Table S3. Screening of different solvents and bases for *N*-arylation of imidazole with iodobenzene.

<sup>a</sup>Reaction conditions: Cu-G catalyst (0.05 g), iodobenzene (1 mmol); imidazole (1.2 mmol); base (2 mmol); solvent (10 mL); <sup>b</sup> Yield determined by GC. <sup>c</sup> Products were identified by GC–MS.



Figure S2. <sup>1</sup>H-NMR spectrum of 4-Methoxy-diphenylether



Figure S4. <sup>1</sup>H-NMR spectrum of 4-Nitro-diphenylether



Figure S6. <sup>1</sup>H-NMR spectrum of 2-Methyl-diphenylether



Figure S8. <sup>1</sup>H-NMR spectrum of 1-(4-nitrophenoxy)-4-methoxybenzene



Figure S9. <sup>1</sup>H-NMR spectrum of 4-Cyano-4-methoxy-diphenylether





Figure S11. <sup>1</sup>H-NMR spectrum of 1-phenyl-1H-imidazole



Figure S12. <sup>1</sup>H-NMR spectrum of 1-(4-(1H-Imidazol-1-yl)phenyl)ethanone



Figure S14. <sup>1</sup>H-NMR spectrum of 1-(4-Methoxyphenyl)-1H-imidazole



Figure S15. <sup>1</sup>H-NMR spectrum of 1-(4-Methylphenyl)-1H-imidazole



Figure S16. <sup>1</sup>H-NMR spectrum of 1-(4-Chlorophenyl)-1H-imidazole



Figure S17. <sup>1</sup>H-NMR spectrum of 1-o-Tolyl-1H-imidazole



Figure S18. <sup>1</sup>H-NMR spectrum of 1-phenyl-1H-pyrrole



Figure S19. <sup>1</sup>H-NMR spectrum of 1-phenyl-1H-pyrazole



Figure S20. <sup>1</sup>H-NMR spectrum of 1-phenyl-1H-benzimidazole



Figure S21. <sup>1</sup>H-NMR spectrum of 1-(4-Methoxyphenyl)-1H-benzimidazole



Figure S22. <sup>1</sup>H-NMR spectrum of 1-(4-Fluorophenyl)-1H-imidazole



Figure S23. <sup>1</sup>H-NMR spectrum of 1-(4-Trifluoromethylphenyl)-1H-imidazole



Figure S24. <sup>1</sup>H-NMR spectrum of 1-(4-Methylphenyl)-1H-benzimidazole



Figure S25. <sup>1</sup>H-NMR spectrum of 1-(3-nitrophenyl)-1H-imidazole



Figure S26. <sup>1</sup>H-NMR spectrum of N-Phenylbenzamide



Figure S27. <sup>1</sup>H-NMR spectrum of 2-Phenylisoindoline-1, 3-dione



Figure S28. UV-visible spectra Cu-G composite after seven times reuse showing that it remains similar to as synthesized Cu-G.



Figure S29. Raman spectra of Cu-G composite after seven times reuse, showing two well documented D and G bands at 1315 and 1600 cm<sup>-1</sup> and band intensity ratio  $(I_D/I_G)$  of 2.35. Some shifting of D band is likely due to structural rearrangement of graphene.



Figure S30. Representative TEM image of Cu-G composites after seven times reuse.