Electronic Supplementary Information

Mild and Efficient Capture and Functionalisation of CO₂ using Silver(I) Oxide and Application to ¹³C-labelled Dialkyl Carbonates

Gemma A. Tunbridge, Riccardo Baruchello and Lorenzo Caggiano*

General Experimental	•	•	•	•	S2
Synthetic Procedures (Table 1)					S 3
Synthetic Procedures (Table 2)					S17
Synthetic Procedures (Scheme 4) and Experimenta	ıl Refer	ences			S18
NMR Spectra of Compounds (Table 1 and Scheme	4)				S19
Synthetic Procedure for the Optimisation Study (Ta	able 3)				S29
Synthetic Procedures for ¹³ C-labelled experiments	(Table	e 4, Sch	eme 5)		S30
$\begin{array}{l} \text{NMR Spectra for the } {}^{13}\text{C-labelled experiments} \\ 100:0, \ NaH^{12}\text{CO}_3: NaH^{13}\text{CO}_3 \\ 75:25, \ NaH^{12}\text{CO}_3: NaH^{13}\text{CO}_3 \\ 50:50, \ NaH^{12}\text{CO}_3: NaH^{13}\text{CO}_3 \\ 50:50, \ NaH^{12}\text{CO}_3: NaH^{13}\text{CO}_3, \ purged \ prior \ to \ experiments \\ 25:75, \ NaH^{12}\text{CO}_3: NaH^{13}\text{CO}_3 \\ 0:100, \ NaH^{12}\text{CO}_3: NaH^{13}\text{CO}_3 \\ 0:100, \ NaH^{12}\text{CO}_3: NaH^{13}\text{CO}_3, \ using \ Ag_2\text{CO}_3 \end{array}$	ment				S32 S32 S33 S34 S35 S36 S37 S38
Determination of ratios by 13 C NMR .	•		•		S40
Determination of ratios by HRMS					S52
NMR Spectra of the Optimisation Study (Table 3)					S55
Certificate of Analysis of NaH ¹³ CO ₃ .	•		•		S71

Experimental

General Experimental

Chemicals, solvents and reagents were purchased from commercial sources and used without further purification. PE refers to petroleum ether, bp 40-60 °C. Anhydrous solvents were used where indicated. Glassware for dry reactions was dried either by heating in an oven at 120 °C for at least 1 h, or heating with a hot air gun for 5 min. The glassware was then allowed to cool under a stream of N₂. $CO_{2(g)}$ was generated by allowing commercially available dry ice ($CO_{2(S)}$) to sublime at room temperature in a stoppered flask fitted with an empty balloon. The balloon would gradually fill with CO_2 gas which was used directly in the CO_2 reactions. In the ¹³C incorporation experiments, $CO_{2(g)}$ was generated by the addition of 3M HCl_(aq) to NaHCO_{3(s)}. ¹³CO_{2(g)} was generated from NaH¹³CO₃ (isotopic enrichment 99% ¹³C – see Certificate of Analysis pS71), obtained from CK Gas Products Ltd.

TLCs were carried out on Merck Aluminium backed TLC plates Silica Gel 60 F254 and viewed using UV light of wavelength 254 nm and then stained with potassium permanganate. Merck Silica Gel (0.040-0.063 mm) was used for column chromatography. Compounds were loaded as an oil, CH₂Cl₂ solution or dry loaded by adsorption onto silica.

Melting points were obtained using a Reichert-Jung heated-stage microscope. Infrared spectra were recorded on a Perkin-Elmer Spectrum RXI FT-IR system and reported as cm⁻¹.

NMR spectra were obtained on Varian Mercury VX (400 MHz) or Bruker Avance III (500 or 400 MHz) spectrometers. The chemical shifts are recorded in parts per million (ppm) with reference to tetramethylsilane. The coupling constants J are quoted to the nearest 0.5 Hz and are not corrected.

Mass spectra and high resolution mass spectra were obtained on a micrOTOFTM from Bruker Daltonics (Bremen, Germany) coupled with an electrospray source (ESI-TOF) using an autosampler in an Agilent 1100 LC system. Data was processed using external calibration with the Bruker Daltonics software, DataAnalysisTM as part of the overall hardware control software, Compass 1.1TM.

N,N-Dibenzyl-2-aminoethanol (5a)

ⁿBu₄NI (1.11 g, 3 mmol, 30 mol%) was added to a rapidly stirred suspension of ethanolamine (604 μ L, 10 mmol), benzyl chloride (2.5 mL, 22 mmol, 2.2 equiv.) and K₂CO₃ (4.15 g, 30 mmol, 3 equiv.) in MeCN (30 mL) open to the air. The mixture was heated at reflux for 3.5 h, cooled to room temperature and the solvent removed under reduced pressure. H₂O (30 mL) was added to the residue and the product extracted with EtOAc (4 × 30 mL). The combined organic layers were washed with brine (30 mL), dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude mixture was purified by column chromatography [silica, PE:EtOAc gradient from 100:0 to 20:80] to afford the alcohol **5a** (2.4 g, 99% yield) as a white solid.

R_f [PE:EtOAc 80:20] 0.30;

Mp 42-44 °C (from PE/EtOAc); Lit.¹ 38 °C (from pentane/EtOAc);

IR *v*_{max} (liquid film) 3321 (OH) and 1600 (C=C);

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.35-7.26 (10 H, m, Ph), 3.64 (4 H, s, PhC*H*₂N), 3.59 (2 H, t, *J* = 5.5 Hz, NCH₂C*H*₂OH), 2.68 (2 H, t, *J* = 5.5 Hz, NC*H*₂CH₂OH) and 2.65-2.50 (1 H, m, OH);

¹³**C NMR** $\delta_{\rm C}$ (100 MHz; CDCl₃) 138.7 (Ph), 129.0 (Ph), 128.4 (Ph), 127.2 (Ph), 58.5 (NCH₂CH₂OH), 58.2 (Ph*C*H₂N) and 54.8 (N*C*H₂CH₂OH);

MS *m*/*z* (+ESI) 264 (1%, MNa⁺) and 242 (100%, MH⁺);

HRMS m/z (+ESI) Found 242.1546 (MH⁺) and 264.1368 (MNa⁺). C₁₆H₂₀NO (MH⁺) requires 242.1545 and C₁₆H₁₉NNaO (MNa⁺) requires 264.1364.

Consistent with the spectroscopic data previously reported.^{1, 2}

N,N-Dibenzylamino-2-iodoethane (1a)

Iodine (858 mg, 3.38 mmol, 1.1 equiv.) was added to a rapidly stirred solution of the alcohol **5a** (743 mg, 3.08 mmol), PPh₃ (887 mg, 3.38 mmol, 1.1 equiv.) and imidazole (230 mg, 3.38 mmol, 1.1 equiv.) in CH₂Cl₂ (20 mL) under a N₂ atmosphere. After 5 h of stirring at room temperature, the solvent was removed under reduced pressure. EtOAc (30 mL) and saturated aqueous NaHCO₃ solution (40 mL) were added, the layers separated and the aqueous layer extracted with EtOAc (2×30 mL). The combined organic layers were washed with brine (30 mL), dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude mixture was purified by column chromatography [silica, PE:EtOAc gradient from 100:0 to 30:70] to afford the alkyl iodide **1a** (744 mg, 69% yield) as a clear brown oil.

R_f [PE:EtOAc 70:30] 0.80.

IR *v*_{max} (liquid film) 2925 (CH) and 1602 (C=C);

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.38 (4 H, t, *J* = 7.5 Hz, Ph), 7.34-7.28 (4 H, m, Ph), 7.27-7.21 (2 H, m, Ph), 3.63 (4 H, s, PhCH₂N), 3.16 (2 H, t, *J* = 7.5 Hz, NCH₂CH₂I) and 2.83 (2 H, t, *J* = 7.5 Hz, NCH₂CH₂I);

¹³**C** NMR δ_{C} (100 MHz; CDCl₃) 139.0 (Ph), 128.8 (Ph), 128.3 (Ph), 127.1 (Ph), 58.1 (PhCH₂N), 56.1 (NCH₂CH₂I) and 4.0 (NCH₂CH₂I);

MS *m*/*z* (+ESI) 352 (11%, MH⁺) and 224 (100%, M⁺–I);

HRMS m/z (+ESI) Found 352.0561 (MH⁺). C₁₆H₁₉IN (MH⁺) requires 352.0562.

Consistent with the spectroscopic data previously reported.²

N,N-bis-(3-Methoxybenzyl)-2-aminoethanol (5b)

ⁿBu₄NI (554 mg, 1.5 mmol, 30 mol%) was added to a rapidly stirred suspension of ethanolamine (302 μ L, 5 mmol), 3-methoxybenzyl chloride (1.6 mL, 11 mmol, 2.2 equiv.) and K₂CO₃ (2.07 g, 15 mmol, 3 equiv.) in MeCN (30 mL) open to the air. The mixture was heated at reflux for 3.5 h, cooled to room temperature and the solvent removed under reduced pressure. H₂O (30 mL) was added to the residue and the product extracted with EtOAc (4 × 30 mL). The combined organic layers were washed with brine (30 mL), dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude mixture was purified by column chromatography [silica, PE:EtOAc gradient from 100:0 to 20:80] to afford the alcohol **5b** (1.2 g, 80% yield) as a colourless oil.

R_f [PE:EtOAc 50:50] 0.60;

IR *v*_{max} (liquid film) 3451 (OH), 2943 (C-H), 1600 (C=C) and 1049 (C-O);

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.24 (2 H, t, *J* = 8.0 Hz, Ar), 6.91 (2 H, br.d, *J* = 7.5 Hz, Ar), 6.87 (2 H, t, *J* = 1.5 Hz, Ar), 6.79 (2 H, ddd, *J* = 8.5, 2.5 and 1.0 Hz, Ar), 3.80 (6 H, s, ArOCH₃), 3.60 (4 H, s, ArCH₂N), 3.59 (2 H, t, *J* = 5.0 Hz, NCH₂CH₂OH) and 2.68 (2 H, t, *J* = 5.0 Hz, NCH₂CH₂OH);

¹³**C** NMR δ_{C} (100 MHz; CDCl₃) 159.7 (Ar), 140.4 (Ar), 129.4 (Ar), 121.2 (Ar), 114.6 (Ar), 112.4 (Ar), 58.6 (NCH₂CH₂OH), 58.2 (ArCH₂N), 55.1 (ArOCH₃) and 54.9 (NCH₂CH₂OH);

MS *m*/*z* (+ESI) 324 (13%, MNa⁺) and 302 (100%, MH⁺);

HRMS m/z (+ESI) Found 324.1554 (MNa⁺) and 302.1748 (MH⁺). C₁₈H₂₃NNaO₃ (MNa⁺) requires 324.1576 and C₁₈H₂₄NO₃ (MH⁺) requires 302.1756.

N,*N*-bis-(3-Methoxybenzyl)amino-2-iodoethane (1b)

Iodine (558 mg, 2.2 mmol, 1.1 equiv.) was added to a rapidly stirred solution of the alcohol **5b** (602 mg, 2 mmol), PPh₃ (577 mg, 2.2 mmol, 1.1 equiv.) and imidazole (150 mg, 2.2 mmol, 1.1 equiv.) in CH₂Cl₂ (8 mL) open to the air. After 3.5 h of stirring at room temperature, the solvent was removed under reduced pressure. EtOAc (30 mL) and saturated aqueous NaHCO₃ solution (40 mL) were added, the layers separated and the aqueous layer extracted with EtOAc (2×30 mL). The combined organic layers were washed with brine (30 mL), dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude mixture was purified by column chromatography [silica, PE:EtOAc gradient from 100:0 to 30:70] to afford the alkyl iodide **1b** (550 mg, 67% yield) as a clear brown oil.

R_f [PE:EtOAc 70:30] 0.80;

IR *v*_{max} (liquid film) 2939 (C-H), 1600 (C=C) and 1050 (C-O);

¹**H NMR** $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.22 (2 H, t, *J* = 8.0 Hz, Ar), 7.01 (2 H, br.s, Ar), 6.95 (2 H, d, *J* = 7.5 Hz, Ar), 6.79 (2 H, dd, *J* = 8.0 and 2.5 Hz, Ar), 3.82 (6 H, s, ArOCH₃), 3.61 (4 H, s, ArCH₂N), 3.20 (2 H, t, *J* = 7.5 Hz, NCH₂CH₂I) and 2.83 (2 H, t, *J* = 7.5 Hz, NCH₂CH₂I);

¹³**C** NMR $\delta_{\rm C}$ (100 MHz; CDCl₃) 159.6 (Ar), 140.7 (Ar), 129.2 (Ar), 121.0 (Ar), 114.2 (Ar), 112.6 (Ar), 58.0 (Ar*C*H₂N), 55.9 (N*C*H₂CH₂I), 55.2 (ArO*C*H₃) and 4.30 (NCH₂*C*H₂I);

MS *m*/*z* (+ESI) 316 (100%, M⁺–I+MeOH; **3b**+H⁺), 284 (58%, M⁺–I);

HRMS *m*/*z* (+ESI) Found 284.1646 (M⁺–I). C₁₈H₂₂NO₂ (M⁺–I) requires 284.1651.

<u>CO₂ capture and functionalisation</u> <u>Table 1</u>

Entry 1, Table 1

2-N,N-Dibenzylaminoethyl methyl carbonate (2a)

N,*N*-Dibenzylamino-2-iodoethane **1a** (50 mg, 0.14 mmol) was dissolved in CHCl₃ (2 mL) and CO₂ (1 balloon) was bubbled through. MeOH (0.14 mL, 3.5 mmol, 25 equiv.) was added, followed by Ag₂O (37 mg, 0.16 mmol, 1.1 equiv.) and the reaction vigorously stirred under an atmosphere of CO₂ at room temperature for 35 mins. The reaction mixture was filtered through a cotton wool and silica plug and washed with CHCl₃ (10 mL) and EtOAc (10 mL). The solvent was removed under reduced pressure to give, without the need for further purification, the unsymmetrical carbonate **2a** (40 mg, 95% yield) as a colourless oil.

R_f [PE:EtOAc 80:20] 0.51;

IR *v*_{max} (liquid film) 2955 (CH), 1747 (C=O) and 1602 (C=C);

¹**H NMR** $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.36 (4 H, d, *J* = 7.0 Hz, Ph), 7.30 (4 H, t, *J* = 7.0 Hz, Ph), 7.23 (2 H, t, *J* = 7.0 Hz, Ph), 4.20 (2 H, t, *J* = 6.0 Hz, NCH₂CH₂O), 3.75 (3 H, s, OCO₂CH₃), 3.65 (4 H, s, PhCH₂N) and 2.76 (2 H, t, *J* = 6.0 Hz, NCH₂CH₂O);

¹³**C NMR** δ_{C} (100 MHz; CDCl₃) 155.7 (C=O), 139.2 (Ph), 128.7 (Ph), 128.2 (Ph), 127.0 (Ph), 66.0 (NCH₂CH₂O), 58.7 (PhCH₂N), 54.7 (OCO₂CH₃) and 51.6 (NCH₂CH₂O);

MS *m*/*z* (+ESI) 322 (2%, MNa⁺) and 300 (100%, MH⁺);

HRMS m/z (+ESI) Found 322.1419 (MNa⁺) and 300.1597 (MH⁺). C₁₈H₂₁NNaO₃ (MNa⁺) requires 322.1419 and C₁₈H₂₂NO₃ (MH⁺) requires 300.1600.

Entry 2, Table 1

2-N,N-bis-(3-Methoxybenzyl)aminoethyl methyl carbonate (2b)

N,*N*-bis-(3-Methoxybenzyl)amino-2-iodoethane **1b** (44 mg, 0.11 mmol) was dissolved in CHCl₃ (2 mL) and CO₂ (1 balloon) was bubbled through. MeOH (0.11 mL, 2.72 mmol, 25 equiv.) was added, followed by Ag₂O (27 mg, 0.12 mmol, 1.1 equiv.) and the reaction vigorously stirred under an atmosphere of CO₂ at room temperature for 16 h. The reaction mixture was filtered through a cotton wool and silica plug and washed with CHCl₃ (10 mL) and EtOAc (10 mL). The solvent was removed under reduced pressure to give, without the need for further purification, the unsymmetrical carbonate **2b** (38 mg, 99% yield) as a pale yellow oil.

R_f [PE:EtOAc 70:30] 0.63;

IR *v*_{max} (liquid film) 2834 (CH), 1749 (C=O), 1600 (C=C) and 1047 (CO);

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.23 (2 H, t, J = 8.0 Hz, Ar), 6.98 (2 H, br.s, Ar), 6.95 (2 H, d, J = 7.5 Hz, Ar), 6.79 (2 H, dd, J = 8.0 and 2.5 Hz, Ar), 4.24 (2 H, t, J = 6.0 Hz, NCH₂CH₂O), 3.82 (6 H, s, ArOCH₃), 3.77 (3 H, s, OCO₂CH₃), 3.65 (4 H, s, ArCH₂N) and 2.79 (2 H, t, J = 6.0 Hz, NCH₂CH₂O);

¹³**C NMR** $\delta_{\rm C}$ (100 MHz; CDCl₃) 159.7 (Ar), 155.7 (C=O), 140.9 (Ar), 129.2 (Ar), 121.0 (Ar), 114.0 (Ar), 112.5 (Ar), 65.9 (NCH₂CH₂O), 58.6 (ArCH₂N), 55.1 (ArOCH₃), 54.7 (OCO₂CH₃) and 51.7 (NCH₂CH₂O);

MS *m*/*z* (+ESI) 360 (100%, MH⁺);

HRMS *m/z* (+ESI) Found 360.1805 (MH⁺). C₂₀H₂₆NO₅ (MH⁺) requires 360.1811.

Entry 3, Table 1

N,N-Dibenzylamino-2-methoxyethane (3a)

Ag₂O (41 mg, 0.18 mmol, 1.1 equiv.) was added in one portion to a rapidly stirred solution of *N*,*N*-dibenzylamino-2-iodoethane **1a** (57 mg, 0.16 mmol) and MeOH (0.16 mL, 4 mmol, 25 equiv.) in CHCl₃ (2 mL) under a N₂ atmosphere at room temperature. After 35 min. the reaction mixture was filtered through a cotton wool and silica plug and washed with CHCl₃ (10 mL) and EtOAc (10 mL). The solvent was removed under reduced pressure to give, without the need for purification, the ether **3a** (37 mg, 91% yield) as a colourless oil.

R_f [PE:EtOAc 70:30] 0.53;

IR *v*_{max} (liquid film) 2923 (CH) and 1601 (C=C);

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.38 (4 H, d, *J* = 8.0 Hz, Ph), 7.30 (4 H, t, *J* = 8.0 Hz, Ph), 7.25-7.21 (2 H, m, Ph), 3.65 (4 H, s, PhCH₂N), 3.49 (2 H, t, *J* = 6.5 Hz, NCH₂CH₂OMe), 3.28 (3 H, s, NCH₂CH₂OMe) and 2.66 (2 H, t, *J* = 6.5 Hz, NCH₂CH₂OMe);

¹³C NMR $\delta_{\rm C}$ (100 MHz; CDCl₃) 139.7 (Ph), 128.8 (Ph), 128.2 (Ph), 126.8 (Ph), 71.5 (NCH₂CH₂OMe), 58.9 (PhCH₂N), 58.7 (NCH₂CH₂OMe) and 52.7 (NCH₂CH₂OMe); MS *m*/*z* (+ESI) 256 (100%, MH⁺);

HRMS *m*/*z* (+ESI) Found 256.1691 (MH⁺). C₁₇H₂₂NO (MH⁺) requires 256.1701.

Entry 4, Table 1

N,*N*-bis-(3-Methoxybenzyl)amino-2-methoxyethane (3b)

Ag₂O (49 mg, 0.21 mmol, 1.1 equiv.) was added in one portion to a rapidly stirred solution of *N*,*N*-bis-(3-methoxybenzyl)amino-2-iodoethane **1b** (80 mg, 0.19 mmol) and MeOH (0.2 mL, 4.94 mmol, 25 equiv.) in CHCl₃ (3 mL) under a N₂ atmosphere at room temperature. After for 16 h. the reaction mixture was filtered through a cotton wool and silica plug and washed with CHCl₃ (10 mL) and EtOAc (10 mL). The solvent was removed under reduced pressure to give, without the need for further purification, the ether **3b** (60 mg, 98% yield) as a pale yellow oil.

R_f [PE:EtOAc 70:30] 0.66;

IR *v*_{max} (liquid film) 2833 (CH), 1600 (C=C) and 1048 (CO);

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.21 (2 H, t, *J* = 8.0 Hz, Ar), 6.98 (2 H, d, *J* = 2.5 Hz, Ar), 6.95 (2 H, d, *J* = 8.0 Hz, Ar), 6.78 (2 H, dd, *J* = 8.0 and 2.5 Hz, Ar), 3.81 (6 H, s, ArOMe), 3.63 (4 H, s, ArCH₂N), 3.50 (2 H, t, *J* = 6.0 Hz, NCH₂CH₂OMe), 3.29 (3 H, s, NCH₂CH₂OMe) and 2.69 (2 H, t, *J* = 6.0 Hz, NCH₂CH₂OMe);

¹³**C** NMR $\delta_{\rm C}$ (100 MHz; CDCl₃) 159.6 (Ar), 141.5 (Ar), 129.1 (Ar), 121.0 (Ar), 114.2 (Ar), 112.3 (Ar), 71.5 (NCH₂CH₂OMe), 58.8 (ArCH₂N), 58.7 (NCH₂CH₂OMe), 55.1 (ArOMe) and 52.8 (NCH₂CH₂OMe);

MS *m*/*z* (+ESI) 338 (1%, MNa⁺) and 316 (100%, MH⁺);

HRMS m/z (+ESI) Found 338.1718 (MNa⁺) and 316.1891 (MH⁺). C₁₉H₂₅NNaO₃ (MNa⁺) requires 338.1732 and C₁₉H₂₆NO₃ (MH⁺) requires 316.1913.

Entry 5, Table 1

Bis-[2-*N*,*N*-bis-(3-Methoxybenzyl)aminoethyl] carbonate (4b)

A solution of *N*,*N*-bis-(3-methoxybenzyl)amino-2-iodoethane **1b** (133 mg, 0.32 mmol) in CH₂Cl₂ (2 mL) was vigorously stirred under an atmosphere of CO₂ (balloon) at room temperature for 2 h before Ag₂O (81 mg, 0.35 mmol, 1.1 equiv.) was added in one portion and the reaction stirred for a further 16 h under an atmosphere of CO₂. The reaction mixture was filtered through a pad of Celite®, washed with CH₂Cl₂ (10 mL) and the solvent removed under reduced pressure to give, without the need for further purification, the symmetrical carbonate **4b** (95 mg, 94% yield) as a clear yellow oil.

R_f [PE:EtOAc 70:30] 0.40;

IR *v*_{max} (liquid film) 3054 (CH), 1744 (C=O), 1601 (C=C) and 1264 (CO);

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.20 (4 H, t, J = 8.0 Hz, Ar), 6.95 (4 H, br.s, Ar), 6.93 (4 H, d, J = 8.0 Hz, Ar), 6.77 (4 H, dd, J = 8.0 and 2.0 Hz, Ar), 4.20 (4 H, t, J = 6.5 Hz, NCH₂CH₂O), 3.79 (12 H, s, ArOMe), 3.63 (8 H, s, ArCH₂N) and 2.77 (4 H, t, J = 6.5 Hz, NCH₂CH₂O);

¹³C NMR $\delta_{\rm C}$ (100 MHz; CDCl₃) 159.7 (Ar), 155.1 (C=O), 140.9 (Ar), 129.2 (Ar), 121.0 (Ar), 114.0 (Ar), 112.5 (Ar), 65.8 (NCH₂CH₂O), 58.6 (Ar*C*H₂N), 55.1 (Ar*OMe*) and 51.6 (N*C*H₂CH₂O);

MS *m*/*z* (+ESI) 651 (100%, MNa⁺);

HRMS m/z (+ESI) Found 651.3028 (MNa⁺). C₃₇H₄₄N₂NaO₇ (MNa⁺) requires 651.3046.

Entry 6, Table 1

Ag₂O (67 mg, 0.29 mmol, 1.1 equiv.) was added in one portion to a rapidly stirred solution of *N*,*N*-dibenzylamino-2-iodoethane **1a** (92 mg, 0.26 mmol) in CH₂Cl₂ (2 mL) at room temperature open to the air. After 16 h. the reaction mixture was filtered through a pad of Celite® and washed with CHCl₃ (10 mL) and the solvent removed under reduced pressure to give a colourless oil. ¹H NMR of this material showed unreacted starting material **1a** (35%), the symmetrical carbonate **4a** (7%), the alcohol **5a** (43%) and the symmetrical ether **6a** (15%).

Entry 7, Table 1

N,*N*-Dibenzylamino-2-iodoethane **1a** (196 mg, 0.56 mmol) was dissolved in CHCl₃ (5 mL) and CO₂ was bubbled through. MeOH (0.11 mL, 2.80 mmol, 5 equiv.) was added, followed by Ag₂O (144 mg, 0.62 mmol, 1.1 equiv.) and the reaction vigorously stirred under an atmosphere of CO₂ at room temperature for 3 h. The reaction mixture was filtered through a pad of Celite®, washed with CHCl₃ (10 mL) and the solvent removed under reduced pressure to give, without the need for further purification, the unsymmetrical carbonate **2a** (158 mg, 95% yield) as a clear pale yellow oil, consistent with the spectroscopic data previous reported for carbonate **2a**.

Entry 8, Table 1

Ag₂CO₃ (83 mg, 0.30 mmol, 1.1 equiv.) was added in one portion to a rapidly stirred solution of *N*,*N*-dibenzylamino-2-iodoethane **1a** (96 mg, 0.27 mmol) and MeOH (0.05 mL, 1.35 mmol, 5 equiv.) in CHCl₃ (2.5 mL) at room temperature open to the air and stirred for 3 h. The reaction mixture was filtered through a pad of Celite® and washed with CHCl₃ (10 mL) and the solvent removed under reduced pressure to give a colourless oil. ¹H NMR of this material showed the unsymmetrical carbonate **2a** (36%), the ether **3a** (17%), the symmetrical carbonate **4a** (26%) and the alcohol **5a** (21%).

Entry 9, Table 1

N,*N*-Dibenzylamino-2-iodoethane **1a** (160 mg, 0.46 mmol) was dissolved in CHCl₃ (4 mL) and CO₂ was bubbled through. MeOH (0.09 mL, 2.30 mmol, 5 equiv.) was added, followed by Ag_2CO_3 (141 mg, 0.51 mmol, 1.1 equiv.) and the reaction vigorously stirred under an atmosphere of CO₂ at room temperature for 3 h. The reaction mixture was filtered through a pad of Celite® and washed with CHCl₃ (10 mL) and the solvent removed under reduced pressure to give a clear yellow oil. ¹H NMR of this material showed the unsymmetrical carbonate **2a** (73%), the alcohol **5a** (17%) and the symmetrical carbonate **4a** (10%).

Entry 10, Table 1

Bis-(2-*N***,***N***-Dibenzylaminoethyl) carbonate (4a)**

Using 5 equivalents of Ag₂CO₃ as reported by Teranishi *et al.*,^{3,4} Ag₂CO₃ (938 mg, 3.40 mmol, 5 equiv.) was added in one portion to a rapidly stirred solution of *N*,*N*-dibenzylamino-2-iodoethane **1a** (237 mg, 0.68 mmol) and MeOH (0.14 mL, 3.40 mmol, 5 equiv.) in CHCl₃ (9 mL) open to the atmosphere at room temperature. The flask was covered in foil⁵ and after 2.5 h. the reaction mixture was filtered through a pad of Celite® and washed with CHCl₃ (10 mL). The solvent was removed under reduced pressure to give a pale yellow oil. ¹H NMR of this material showed the unsymmetrical carbonate **2a** (17%), the alcohol **5a** (14%) and the symmetrical carbonate **4a** (69%).

Entry 11, Table 1

N,N-Dibenzylamino-2-chloroethane (7a)

N,*N*-Dibenzylamino-2-iodoethane **1a** (135 mg, 0.38 mmol) was dissolved in CHCl₃ (4 mL) and CO₂ was bubbled through. MeOH (0.39 mL, 9.62 mmol, 25 equiv.) was added followed by AgCl (62 mg, 0.43 mmol, 1.1 equiv.) and the reaction vigorously stirred under a CO₂ atmosphere at room temperature for 16 h. The resulting cloudy pale yellow mixture was filtered through a pad of Celite®, washed with CHCl₃ (10 mL) and the solvent removed under reduced pressure to give, without the need for further purification, the alkyl chloride **7a** (87 mg, 87% yield) as a clear yellow oil.

R_f [PE:EtOAc 80:20] 0.55;

IR *v*_{max} (liquid film) 3003 (CH) and 1601 (C=C);

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.37 (4 H, d, J = 7.0 Hz, Ph), 7.31 (4 H, t, J = 8.0 Hz, Ph), 7.24 (2 H, t, J = 7.0 Hz, Ph), 3.65 (4 H, s, PhCH₂N), 3.48 (2 H, t, J = 7.0 Hz, NCH₂CH₂Cl) and 2.83 (2 H, t, J = 7.0 Hz, NCH₂CH₂Cl);

¹³C NMR δ_C (100 MHz; CDCl₃) 139.4 (Ph), 129.0 (Ph), 128.6 (Ph), 127.4 (Ph), 59.0 (PhCH₂N), 55.6 (NCH₂CH₂Cl) and 42.1 (NCH₂CH₂Cl);

MS *m*/*z* (+ESI) 260 (100%, MH⁺) and 224 (12%, M⁺–Cl);

HRMS m/z (+ESI) Found 260.1185 (MH⁺). C₁₆H₁₉ClN (MH⁺) requires 260.1206.

Consistent with the spectroscopic data previously reported for the alkyl chloride **7a**.⁶

Entry 12, Table 1

N,N-Dibenzylamino-2-chloroethane (7a)

N,*N*-Dibenzylamino-2-iodoethane **1a** (82 mg, 0.23 mmol) was dissolved in MeCN (2 mL) and CO₂ was bubbled through. MeOH (0.24 mL, 5.75 mmol, 25 equiv.) was added followed by AgCl (36 mg, 0.25 mmol, 1.1 equiv.) and the reaction vigorously stirred under a CO₂ atmosphere at room temperature for 16 h. The resulting cloudy pale yellow mixture was filtered through a pad of Celite®, washed with EtOAc (10 mL) and the solvent removed under reduced pressure to give, without the need for further purification, the alkyl chloride **7a** (60 mg, 99% yield) as a clear yellow oil.

Entry 13, Table 1

N,*N*-Dibenzylamino-2-iodoethane **1a** (65 mg, 0.19 mmol) was dissolved in CHCl₃ (3 mL) and CO₂ was bubbled through. MeOH (0.19 mL, 4.63 mmol, 25 equiv.) was added followed by AgF (27 mg, 0.21 mmol, 1.1 equiv.) and the reaction vigorously stirred under a CO₂ atmosphere at room temperature for 16 h. The reaction mixture was filtered through a pad of silica and washed with EtOAc (10 mL) and CHCl₃ (10 mL). The solvent was removed under reduced pressure to give a pale orange oil. ¹H NMR of this material showed the methyl ether **3a** (55%) and the alkyl fluoride **8a** (45%), which were consistent with the spectroscopic data previously reported in this study for the methyl ether **3a** and with the alkyl fluoride **8a** described previously.⁷

<u>Investigation of the Ag₂O loading</u> <u>Table 2</u>

Entry 2, Table 2

N,*N*-Dibenzylamino-2-iodoethane **1a** (74 mg, 0.21 mmol) was dissolved in CHCl₃ (3 mL) and CO₂ was bubbled through. MeOH (0.21 mL, 5.25 mmol, 25 equiv.) was added, followed by Ag₂O (35 mg, 0.15 mmol, 0.7 equiv.) and the reaction vigorously stirred under an atmosphere of CO₂ at room temperature for 2.5 h. The reaction mixture was filtered through a cotton wool plug and washed with EtOAc (10 mL). The solvent was removed under reduced pressure to give, without the need for further purification, the unsymmetrical carbonate **2a** (50 mg, 80% yield) as a colourless oil.

Entry 3, Table 2

N,*N*-Dibenzylamino-2-iodoethane **1a** (74 mg, 0.21 mmol) was dissolved in CHCl₃ (3 mL) and CO₂ was bubbled through. MeOH (0.21 mL, 5.25 mmol, 25 equiv.) was added, followed by Ag₂O (25 mg, 0.11 mmol, 0.5 equiv.) and the reaction vigorously stirred under an atmosphere of CO₂ at room temperature for 2.5 h. The reaction mixture was filtered through a cotton wool plug and washed with EtOAc (10 mL). The solvent was removed under reduced pressure to give a colourless oil. ¹H NMR of this material showed unreacted starting material **1a** (25%), the unsymmetrical carbonate **2a** (67%) and the methyl ether **3a** (8%).

Scheme 4

1-Iodooctane **1c** (0.36 mL, 2 mmol, 1eq.) was dissolved in CHCl₃ (15 mL) and CO₂ was bubbled through. MeOH (0.49 mL, 12 mmol, 6 eq.) was added followed by Ag₂O (510 mg, 2.2 mmol, 1.1 eq.) and the reaction vigorously stirred under a CO₂ atmosphere at room temperature for 16 h. Na₂SO₄ was added and the reaction mixture filtered through a pad of Celite® and washed with CHCl₃ (20 mL). The solvent removed under reduced pressure to afford a colourless oil. ¹H NMR of this material showed unreacted starting material **1c** (47%), the unsymmetrical carbonate **2c** (38%), the unsymmetrical ether **3c** (9%), the symmetrical carbonate **4c** (3%) and octanol **5c** (3%). Assignments were made with the spectroscopic data previously reported for the unsymmetrical **2c**⁸⁻¹⁰ and symmetrical **4c**^{9,10} carbonates.

Experimental References

- 1. F. Wurm, J. Klos, H. J. Räder and H. Frey, *J. Am. Chem. Soc.*, 2009, **131**, 7954-7955.
- 2. G. M. Almiento, D. Balducci, A. Bottoni, M. Calvaresi and G. Porzi, *Tetrahedron: Asymmetry*, 2007, **18**, 2695-2711.
- 3. K. Teranishi, T. Kayakiri, M. Mizutani, M. Hisamatsu and T. Yamada, *Biosci.*, *Biotechnol., Biochem.*, 1994, **58**, 1537-1539.
- 4. K. Teranishi, H. Nakao, A. Komoda and M. Hisamatsu, *Synthesis*, 1995, 176.
- 5. R. L. Baumes, C. L. Bayonove, R. E. Cordonnier, Y. Z. Gunata, R. Wylde and A. Heitz, *Carbohydr. Res.*, 1989, **189**, 331-340.
- 6. S. Andrews, S. J. Burgess, D. Skaalrud, J. X. Kelly and D. H. Peyton, *J. Med. Chem.*, 2010, **53**, 916-919.
- 7. C. R. S. Briggs, M. J. Allen, D. O'Hagan, D. J. Tozer, A. M. Z. Slawin, A. E. Goeta and J. A. K. Howard, *Org. Biomol. Chem.*, 2004, **2**, 732-740.
- 8. C. Yu, B. Zhou, W. Su and Z. Xu, Synth. Commun., 2007, 37, 645-651.
- P. Tundo, F. Arico, A. E. Rosamilia and S. Memoli, *Green Chemistry*, 2008, 10, 1182-1189.
- 10. P. Tundo, C. R. McElroy and F. Aricò, Synlett, 2010, 1567-1571.

N,*N*-Dibenzylamino-2-iodoethane (1a)

N,N-bis-(3-Methoxybenzyl)amino-2-iodoethane (1b)

<u>Entry 1, Table 1</u>

2-N,N-Dibenzylaminoethyl methyl carbonate (2a)

2-N,N-bis-(3-Methoxybenzyl)aminoethyl methyl carbonate (2b)

Entry 3, Table 1

N,N-Dibenzylamino-2-methoxyethane (3a)

N,*N*-bis-(3-Methoxybenzyl)amino-2-methoxyethane (3b)

Entry 5, Table 1

Bis-[2-*N*,*N*-bis-(3-Methoxybenzyl)aminoethyl] carbonate (4b)

Expansion

Entry 8, Table 1

S25

Entry 9, Table 1

N,*N*-Dibenzylamino-2-chloroethane (7a)

Synthetic Procedure for the Optimisation Study (Table 3)

Table 3. Optimisation of the Ag-mediated capture and functionalisation of CO ₂ with alkyl halides. ^a											
CO ₂ balloon											
		Aq(I) s	salt			ر ا	3		U		
	P_)	/	> □_		R	$\langle R^1$	З,		R R	R-OH	
	K-7	\ О	Ц	-~	0	0	6,	R-OR	0 0	K-0H	
	1	K -0	· ·	1	2	2	9 ,	R—OBz	4	5	
		solve	nt								
Entry	R-X	R ¹ -OH	Ag₂O	т	Time	solvent	R-	ROCO₂R ¹	R-O-R [']	ROCO₂R	R-OH
-	1	(equiv.)	(equiv.)	(°C)	(h)		х	2	3 (6/9) ^b	4	5
							1				
1	Oct-I	BnOH (1.5)	1.5	20	18	CHCl ₃	56	22	9	4	9
2	Oct-I	BnOH (1.5)	1.5	45	20	CHCl₃	31	25	25	5	14
3	Oct-I	BnOH (1.5)	1.1	50	20	CHCl ₃	76	8	5	2	9
4	Oct-I	BnOH (5)	1.1	50	20		20	35	22	3	20
5	Oct-I	BnOH (5)	1.5	45	20		14	36	24	4	22
6	Oct-I		1.1	40	10		32	42	10	4	12
	Oct-I		1.1	45	10		59 16	24	12 (2) 2 (6)	2 10	0 15
9	Oct-I	BnOH(1.5)	1.5	20	18		69	17	13 (3), 2 (0) 4	2	8
10	Oct-I	BnOH (1.5)	1.5	20 45	18	PhMe	51	19	11	3	16
11	Oct-I	BnOH (1.5)	1.5	100	18	PhMe	-	11	48 (3) 2 (6) 10 (9)	2	27
12	Oct-I	BnOH (5)	1.5	100	18	PhMe	-	10	47 (3), 11 (9)	1	31
13 [°]	Oct-I	BnOH (1.5)	1.5	100	18	PhMe	6	-	71 (3), 2 (6), 14 (9)	-	7
14	Oct-I	BnOH (1.5)	1.5	20	18	MeCN	7	15	3 (3), 2 (6)	7	66
15	Oct-I	BnOH (1.5)	1.5	45	18	MeCN	3	19	5 (3), 1 (6)	6	66
16	Oct-I	BnOH (20)	1.5	20	20	neat	-	55	44	1	-
17	Oct-I	BnOH (20)	1.5	45	4	neat	-	43	40	1	16
18°	Oct-I	MeOH(123)	1.1	40	4	neat	-	72	7	2	19
19	Oct-I	iPrOH (30)	1.5	45	5	neat	-	72	13	4	11
20	Oct-I	iPrOH (30)	1.5	45	20	neat	-	75	12	4	9
21	Oct-I		0.5	40	20 20	neat	40	37	10	2	0
22	Hoy Br		0.5	45	20	neat	31	37	23	2	62
24	Hex-Br	BnOH (20)	1.5	45	20	neat	12	12	21 (3) 1 (9)	1	53
25	Hex-Br	BnOH (20)	2	45	16	neat	10	14	22	1	53
26	Hex-Cl	iPrOH (30)	2	45	16	neat	100	-		-	-
27	Oct-I	iPrOH (30)	1.5Ag ₂ CO ₃	45	20	neat	15	35	12 (3), 4 (6)	21	13
28 ^c	Oct-I	iPrOH (30)	1.5Ag ₂ CO ₃	45	20	neat	28	6	31 (3), 3 (6)	7	25
29	Hex-I	BnOH (20)	3 AgCl	45	20	neat	100	-	-	-	-
30	Hex-I	BnOH (20)	3 AgNO ₃	45	20	neat	-	-	54 (3), 46 (9)	-	-
31	Hex-I	BnOH (20)	2.5 Agl	45	16	neat	100	-	-	-	-
			+ 1.0	45	5	neat	-	40	41	2	17
			Ag ₂ O								

^a The ratios are expressed as % and were obtained from ¹H NMR of the crude reaction mixture after it had been filtered through Celite® and the solvent removed under reduced pressure. All experiments were conducted with 1 mmol of R-X under an atmosphere of CO₂ generated from the sublimation of dry ice, except where indicated. ^b All values are of the unsymmetrical ether **3**, unless otherwise stated. ^c Reaction conducted under an atmosphere of N₂. ^d Reaction conducted with 3 mmol Oct-I in 15 mL MeOH.

A balloon filled with $CO_{2(g)}$, generated by the sublimation of commercially available dry ice, was bubbled through a rapidly stirred suspension of the alkyl halide (1mmol), Ag(I) salt and an alcohol in a solvent (if any) at room temperature in a sealed tube. The reaction was then sealed, thus maintaining a $CO_{2(g)}$ atmosphere, and heated at the required temperature for the times shown in Table 3 above. The reaction mixture was filtered through Celite®, washed with CHCl₃ and the solvent carefully evaporated under reduced pressure. ¹H NMR was performed of the crude reaction mixture and the ratio of products calculated from integration of indicative signals.

Synthetic Procedures for ¹³C-labelled experiments (Table 4, Scheme 5)

The desired mixture of NaHCO_{3(s)} was accurately weighted and placed in a sealed 5 mL round-bottomed flask, fitted with a cannula which was positioned in the air-space *above* the reaction mixture. The other end of the cannula was positioned *in* the reaction mixture of a separate and sealed round-bottomed flask which contained a rapidly stirred suspension of the alkyl iodide, Ag₂O and MeOH at room temperature. This flask was also fitted with an empty balloon to act as a reservoir of the $CO_{2(g)}$ produced. The addition of 3M HCl_(aq) to the first flask containing the NaHCO_{3(s)} generated $CO_{2(g)}$ which passed through the cannula and into the reaction mixture in the second flask and into the balloon reservoir. Once the bubbling had ceased and no more NaHCO_{3(s)} was evident, the cannula was removed from the reaction mixture in the second flask and the reaction heated to 40 °C for 4 hours under the balloon filled with CO₂. The reaction was filtered through filter paper and cotton wool, washed with MeOH and the solvent carefully removed under reduced pressure to afford carbonate **2d**.

Entry 1, Table 4. Measured ratio 100:0 NaH¹²CO₃:NaH¹³CO₃

Following the general procedure, CO_2 generated by the addition of 3M HCl to NaH¹²CO₃ (571 mg, 6.80 mmol, 5 eq.) was bubbled through a rapidly stirred mixture of 1-iodohexane (287 mg, 1.36 mmol, 1 eq.) and Ag₂O (377 mg, 1.63 mmol, 1.2 eq.) in MeOH (2.5 mL) to give the carbonate **2d** (137 mg, 63% yield) as a colourless oil.

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 4.12 (2 H, t, *J* = 6.5 Hz, CH₂OCO₂Me), 3.76 (3 H, s, CH₂OCO₂Me), 1.64 (2 H, quintet, *J* = 7.0 Hz, CH₂CH₂OCO₂), 1.40-1.24 (6 H, m, CH₃(CH₂)₃) and 0.86 (3 H, t, *J* = 7.0 Hz, CH₃(CH₂)₃);

¹³**C NMR** $\delta_{\rm C}$ (100 MHz; CDCl₃) 155.84 (C=O), 68.21 (CH₂OCO₂Me), 54.57 (CH₂OCO₂Me), 31.33 (CH₃(CH₂)₃), 28.56 (CH₂CH₂OCO₂), 25.29 (CH₃(CH₂)₃), 22.46 (CH₃(CH₂)₃) and 13.93 (CH₃(CH₂)₃);

MS *m*/*z* (+ESI) 184.1 (10%, MNa⁺) and 183.1 (100%, MNa⁺);

HRMS *m*/*z* (+ESI) Found 183.1035 (MNa⁺). C₈H₁₆NaO₃ (MNa⁺) requires 183.0997.

Entry 2, Table 4. Measured ratio 75:25 NaH¹²CO₃:NaH¹³CO₃

Following the general procedure, CO_2 generated by the addition of 3M HCl to a mixture of 75% NaH¹²CO₃ (428.4 mg, 5.10 mmol, 3.75 eq.) and 25% NaH¹³CO₃ (144.5 mg, 1.70 mmol, 1.25 eq.) was bubbled through a rapidly stirred mixture of 1-iodohexane (288 mg, 1.36 mmol, 1 eq.) and Ag₂O (378 mg, 1.63 mmol, 1.2 eq.) in MeOH (2.5 mL) to give the carbonate **2d** (148 mg, 68% yield) as a colourless oil.

Entry 3, Table 4. Measured ratio 50:50 NaH¹²CO₃:NaH¹³CO₃

Following the general procedure, CO_2 generated by the addition of 3M HCl to a mixture of 50% NaH¹²CO₃ (286 mg, 3.40 mmol, 2.50 eq.) and 50% NaH¹³CO₃ (289 mg, 3.40 mmol, 2.50 eq.) was bubbled through a rapidly stirred mixture of 1-iodohexane (287 mg, 1.36 mmol, 1 eq.) and Ag₂O (378 mg, 1.63 mmol, 1.2 eq.) in MeOH (2.5 mL) to give the carbonate **2d** (148 mg, 68% yield) as a colourless oil.

Entry 4, Table 4. Measured ratio 25:75 NaH¹²CO₃:NaH¹³CO₃

Following the general procedure, CO_2 generated by the addition of 3M HCl to a mixture of 25% NaH¹²CO₃ (143 mg, 1.70 mmol, 1.25 eq.) and 75% NaH¹³CO₃ (435 mg, 5.12 mmol, 3.76 eq.) was bubbled through a rapidly stirred mixture of 1-iodohexane (288 mg, 1.36 mmol, 1 eq.) and Ag₂O (378 mg, 1.63 mmol, 1.2 eq.) in MeOH (2.5 mL) to give the carbonate **2d** (153 mg, 70% yield) as a colourless oil.

Entry 5, Table 4. Measured ratio 0:100 NaH¹²CO₃:NaH¹³CO₃

Following the general procedure, CO_2 generated by the addition of 3M HCl to NaH¹³CO₃ (425 mg, 5 mmol, 5 eq.) was bubbled through a rapidly stirred mixture of 1-iodohexane (212 mg, 1 mmol, 1 eq.) and Ag₂O (278 mg, 1.2 mmol, 1.2 eq.) in MeOH (2 mL) to give the carbonate **2d** (96 mg, 60% yield) as a colourless oil.

¹**H** NMR $\delta_{\rm H}$ (400 MHz; CDCl₃) 4.12 (2 H, tt, J = 6.5 and 1.5 Hz, $CH_2O^{13}CO_2Me$), 3.76 (3 H, t, J = 2.0 Hz, $CH_2O^{13}CO_2Me$), 1.72-1.61 (2 H, m, $CH_2CH_2O^{13}CO_2$), 1.40-1.24 (6 H, m, $CH_3(CH_2)_3$) and 0.88 (3 H, t, J = 7.0 Hz, $CH_3(CH_2)_3$);

¹³**C NMR** $\delta_{\rm C}$ (100 MHz; CDCl₃) 155.82 (¹³C=O), 68.16 (d, J = 1.5 Hz, $CH_2O^{13}CO_2Me$), 54.48 (d, J = 1.5 Hz, $CH_2O^{13}CO_2Me$), 31.30 ($CH_3(CH_2)_3$), 28.55 (d, J = 2.5 Hz, $CH_2CH_2O^{13}CO_2$), 25.26 ($CH_3(CH_2)_3$), 22.41 ($CH_3(CH_2)_3$) and 13.86 ($CH_3(CH_2)_3$);

MS m/z (+ESI) 185.1 (7.6%, MNa⁺), 184.1 (100%, MNa⁺) and 183.1 (3.0%, MNa⁺); **HRMS** m/z (+ESI) Found 184.1025 (MNa⁺). C₇⁻¹³CH₁₆NaO₃ (MNa⁺) requires 184.1031.

NMR Spectra for the ¹³C-labelled CO₂ experiments

Measured ratio 100:0 NaH¹²CO₃:NaH¹³CO₃ Entry 1, Table 4

Measured ratio 25:75 NaH¹²CO₃:NaH¹³CO₃ Entry 4, Table 4

Measured ratio 0:100 NaH¹²CO₃:NaH¹³CO₃ As Entry 5, Table 4, but with Ag₂CO₃

<u>Measured ratio 0:100 NaH¹²CO₃:NaH¹³CO₃</u> <u>As Entry 5, Table 4, but with Ag₂CO₃</u>

<u>Isotopic labelling experiments</u> <u>Determination of ratios by ¹³C NMR</u>

Simultaneous equations: \mathbf{x} is the proportion of the integral corresponding to the ¹²C compound and \mathbf{y} is the proportion of the integral corresponding to the ¹³C compound.

Standard 100 MHz ¹³C NMR experiments were performed, with 1024 scans. Owing to different relaxation times, the integral of the C=O peak differs to the integrals of the remaining peaks, although each peak represents a single carbon. The difference in the integrals was determined from the non-labelled compound ("reference ¹³C NMR", page S6), which was incorporated in the equations below as the "integration factor".

In addition, the C=O signal for the ¹³C compound **y** will be 100% abundant, so in order to make a direct comparison with the C=O signal for the ¹²C compound **x**, we must use a conversion factor to take into account the natural abundance of ¹³C which is 1.11%. Therefore, the C=O peak for compound **y** will be magnified by a factor of 100/1.11. For all other C signals, $\mathbf{x} + \mathbf{y}$ will simply equal the integral of that peak.

Measured ratio 75:25 NaH¹²CO₃:NaH¹³CO₃

Entry 2, Table 4

Comparison of C=O peak at 155.8 ppm integral 7.3152 with 68.2 ppm integral 1.0000 Integration factor = 3.6904

1) x + y = 1.0000 2) x + (100y/1.11) = 7.3152 × 3.6904

Rearranging Eq. 1 to y = 1.0000 - x and substituting into Eq. 2 gives:

3) x + (100(1 - x)/1.11) = 26.9960, becomes 4) 90.0901 - 89.0901x = 26.9960, becomes 5) 89.0901x = 63.0941, 6) x = 0.7082

From Eq. 1, x + y = 1.0000; x = 0.7082 and y = 0.2918, $\frac{{}^{12}C = 70.8\%}{2000}$ and ${}^{13}C = 29.2\%$

Comparison of C=O peak at 155.8 ppm integral 7.3152 with 54.57 ppm integral 0.7842 Integration factor = 2.6110

1) x + y = 0.78422) $x + (100y/1.11) = 7.3152 \times 2.6110$

Rearranging Eq. 1 to y = 0.7842 - x and substituting into Eq. 2 gives:

3) x + (100(0.7842 - x)/1.11) = 19.1000, becomes 4) 70.6486 - 89.0901x = 19.1000, becomes 5) 89.0901x = 51.5487, 6) x = 0.5786

From Eq. 1, x + y = 0.7842, x = 0.5786 and y = 0.2056, $\frac{{}^{12}C = 73.8\%}{2}$ and ${}^{13}C = 26.2\%$

Comparison of C=O peak at 155.8 ppm integral 7.3152 with 31.3 ppm integral 1.0952 Integration factor = 3.5564

1) x + y = 1.0952 2) x + (100y/1.11) = 7.3152 × 3.5564

Rearranging Eq. 1 to y = 1.0952 - x and substituting into Eq. 2 gives:

3) x + (100(1.0952 - x)/1.11) = 26.0158, becomes 4) 98.6667 - 89.0901x = 26.0158, becomes 5) 89.0901x = 72.6509, 6) x = 0.815

From Eq. 1, x + y = 1.0952; x = 0.8155 and y = 0.2797, $\frac{{}^{12}C = 74.5\%}{2}$ and ${}^{13}C = 25.5\%$

Comparison of C=O peak at 155.8 ppm integral 7.3152 with 28.6 ppm integral 1.0263 Integration factor = 3.5026

1) x + y = 1.0263 2) x + (100y/1.11) = 7.3152 × 3.5026

Rearranging Eq. 1 to y = 1.0263 - x and substituting into Eq. 2 gives:

3) x + (100(1.0263 - x)/1.11) = 25.6222, becomes 4) 92.4595 - 89.0901x = 25.6222, becomes 5) 89.0901x = 66.8372, 6) x = 0.7502

From Eq. 1, x + y = 1.0263; x = 0.7502 and y = 0.2761, $\frac{12C}{C} = 73.1\%$ and $\frac{13C}{C} = 26.9\%$

Comparison of C=O peak at 155.8 ppm integral 7.3152 with 25.3 ppm integral 1.1055 Integration factor = 3.4658

1) x + y = 1.1055 2) x + (100y/1.11) = 7.3152 × 3.4658

Rearranging Eq. 1 to y = 1.1055 - x and substituting into Eq. 2 gives:

3) x + (100(1.1055 - x)/1.11) = 25.3530, becomes 4) 99.5946 - 89.0901x = 25.3530, becomes 5) 89.0901x = 74.2416, 6) x = 0.8333

From Eq. 1, x + y = 1.1055; x = 0.8333 and y = 0.2722, $\frac{12}{C} = 75.4\%$ and $\frac{13}{C} = 24.6\%$

Comparison of C=O peak at 155.8 ppm integral 7.3152 with 22.5 ppm integral 1.1190 Integration factor = 3.3807

1) x + y = 1.1190 2) x + (100y/1.11) = 7.3152 × 3.3807

Rearranging Eq. 1 to y = 1.1190 - x and substituting into Eq. 2 gives:

3) x + (100(1.1190 - x)/1.11) = 24.7305, becomes 4) 100.8108 - 89.0901x = 24.7305, becomes 5) 89.0901x = 76.0803, 6) x = 0.854

From Eq. 1, x + y = 1.1190; x = 0.8540 and y = 0.2650, $\frac{{}^{12}C = 76.3\%}{200}$ and ${}^{13}C = 23.7\%$

Comparison of C=O peak at 155.8 ppm integral 7.3152 with 13.9 ppm integral 1.1059 Integration factor = 3.4515

1) x + y = 1.1059 2) x + (100y/1.11) = 7.3152 × 3.4515

Rearranging Eq. 1 to y = 1.1059 - x and substituting into Eq. 2 gives:

3) x + (100(1.1059 - x)/1.11) = 25.2484, becomes 4) 99.6306 - 89.0901x = 25.2484, becomes 5) 89.0901x = 74.3822, 6) x = 0.8349

From Eq. 1, x + y = 1.1059; x = 0.8349 and y = 0.2710, $\frac{12C}{C} = 75.5\%$ and $\frac{13C}{C} = 24.5\%$

Average of the 7 peaks and using population Standard deviation

 $\frac{70.8 + 73.8 + 74.5 + 73.1 + 75.4 + 76.3 + 75.5}{7} = 74.2 \pm 1.7$

 $\frac{12}{C} = 74.2 \pm 1.7\%$ and $^{13}C = 25.8 \pm 1.7\%$

Measured ratio 50:50 NaH¹²CO₃:NaH¹³CO₃

Entry 3, Table 4

Comparison of C=O peak at 155.8 ppm integral 12.4434 with 68.2 ppm integral 1.0000 Integration factor = 3.6904

1) x + y = 1.0000 2) x + (100y/1.11) = 12.4434 × 3.6904

Rearranging Eq. 1 to y = 1.0000 - x and substituting into Eq. 2 gives:

3) x + (100(1 - x)/1.11) = 45.9211, becomes 4) 90.0901 - 89.0901x = 45.9211, becomes 5) 89.0901x = 44.1690, 6) x = 0.4958

From Eq. 1, x + y = 1.0000; x = 0.4958 and y = 0.5042, $\frac{{}^{12}C = 49.6\%}{2}$ and ${}^{13}C = 50.4\%$

Comparison of C=O peak at 155.8 ppm integral 12.4434 with 54.57 ppm integral 0.7342 Integration factor = 2.6110

1) x + y = 0.7342 2) x + (100y/1.11) = 12.4434 × 2.6110

Rearranging Eq. 1 to y = 0.7342 - x and substituting into Eq. 2 gives:

3) x + (100(0.7342 - x)/1.11) = 32.4897, becomes 4) 66.1444 - 89.0901x = 32.4897, becomes 5) 89.0901x = 33.6544, 6) x = 0.3778

From Eq. 1, x + y = 0.7342, x = 0.3778 and y = 0.3564, $\frac{12C = 51.5\%}{1000}$ and $\frac{13C = 48.5\%}{1000}$

Comparison of C=O peak at 155.8 ppm integral 12.4434 with 31.3 ppm integral 0.9691 Integration factor = 3.55641) x + y = 0.96912) x + $(100y/1.11) = 12.4434 \times 3.5564$ Rearranging Eq. 1 to y = 0.9691 - x and substituting into Eq. 2 gives: 3) x + (100(0.9691 - x)/1.11) = 44.2537, becomes 4) 87.3063 - 89.0901x = 44.2537, becomes 5) 89.0901x = 43.0526, 6) x = 0.4832From Eq. 1, x + y = 0.9691; x = 0.4832 and y = 0.4859, $\frac{{}^{12}C = 49.9\%}{}$ and ${}^{13}C = 50.1\%$ Comparison of C=O peak at 155.8 ppm integral 12.4434 with 28.6 ppm integral 0.9806 Integration factor = 3.5026

1) x + y = 0.9806 2) x + (100y/1.11) = 12.4434 × 3.5026

Rearranging Eq. 1 to y = 0.9806 - x and substituting into Eq. 2 gives:

3) x + (100(0.9806 - x)/1.11) = 43.5843, becomes 4) 88.3423 - 89.0901x = 43.5843, becomes 5) 89.0901x = 44.7581, 6) x = 0.5024

From Eq. 1, x + y = 0.9806; x = 0.5024 and y = 0.4782, $\frac{{}^{12}C = 51.2\%}{2}$ and ${}^{13}C = 48.8\%$

Comparison of C=O peak at 155.8 ppm integral 12.4434 with 25.3 ppm integral 0.9815 Integration factor = 3.4658

1) x + y = 0.9815 2) x + (100y/1.11) = 12.4434 × 3.4658

Rearranging Eq. 1 to y = 0.9815 - x and substituting into Eq. 2 gives:

3) x + (100(0.9815 - x)/1.11) = 43.1263, becomes 4) 88.4234 - 89.0901x = 43.1263, becomes 5) 89.0901x = 45.2971, 6) x = 0.5084

From Eq. 1, x + y = 0.9815; x = 0.5084 and y = 0.4731, $\frac{12C}{C} = 51.8\%$ and $\frac{13C}{C} = 48.2\%$

Comparison of C=O peak at 155.8 ppm integral 12.4434 with 22.5 ppm integral 0.9319 Integration factor = 3.38071) x + y = 0.93192) x + $(100y/1.11) = 12.4434 \times 3.3807$ Rearranging Eq. 1 to y = 0.9319 - x and substituting into Eq. 2 gives: 3) x + (100(0.9319 - x)/1.11) = 42.0674, becomes 4) 83.9550 - 89.0901x = 42.0674, becomes 5) 89.0901x = 41.8876, 6) x = 0.4702From Eq. 1, x + y = 0.9319; x = 0.4702 and y = 0.4617, $\frac{12C}{12} = 50.5\%$ and $\frac{13C}{12} = 49.5\%$ Comparison of C=O peak at 155.8 ppm integral 12.4434 with 13.9 ppm integral 0.9093 Integration factor = 3.4515

1) x + y = 0.9093 2) x + (100y/1.11) = 12.4434 × 3.4515

Rearranging Eq. 1 to y = 0.9093 - x and substituting into Eq. 2 gives:

3) x + (100(0.9093 - x)/1.11) = 42.9484, becomes 4) 81.9189 - 89.0901x = 42.9484, becomes 5) 89.0901x = 38.9705, 6) x = 0.4374

From Eq. 1, x + y = 0.9093; x = 0.4374 and y = 0.4719, $\frac{{}^{12}C = 48.1\%}{100}$ and ${}^{13}C = 51.9\%$

Average of the 7 peaks and using population Standard deviation

 $\frac{49.6 + 51.5 + 49.9 + 51.2 + 51.8 + 50.5 + 48.1}{7} =$ **50.4±1.2**

 $\frac{^{12}C = 50.4 \pm 1.2\%}{^{20}}$ and $^{13}C = 49.6 \pm 1.2\%$

Measured ratio 25:75 NaH¹²CO₃:NaH¹³CO₃

Entry 4, Table 4

Comparison of C=O peak at 155.8 ppm integral 18.6321 with 68.2 ppm integral 1.0000 Integration factor = 3.6904

1) x + y = 1.0000 2) x + (100y/1.11) = 18.6321 × 3.6904

Rearranging Eq. 1 to y = 1.0000 - x and substituting into Eq. 2 gives:

3) x + (100(1 - x)/1.11) = 68.7599, becomes 4) 90.0901 - 89.0901x = 68.7599, becomes 5) 89.0901x = 21.3302, 6) x = 0.2394

From Eq. 1, x + y = 1.0000; x = 0.2394 and y = 0.7606, $\frac{{}^{12}C = 23.9\%}{}$ and ${}^{13}C = 76.1\%$

Comparison of C=O peak at 155.8 ppm integral 18.6321 with 54.57 ppm integral 0.7383 Integration factor = 2.6110

1) x + y = 0.7383 2) x + (100y/1.11) = 18.6321 × 2.6110

Rearranging Eq. 1 to y = 0.7383 - x and substituting into Eq. 2 gives:

3) x + (100(0.7383 - x)/1.11) = 48.6484, becomes 4) 66.5135 - 89.0901x = 48.6484, becomes 5) 89.0901x = 17.8651, 6) x = 0.2005

From Eq. 1, x + y = 0.7383, x = 0.2005 and y = 0.5378, $\frac{{}^{12}C = 27.2\%}{}$ and ${}^{13}C = 72.8\%$

Comparison of C=O peak at 155.8 ppm integral 18.6321 with 31.3 ppm integral 1.0349 Integration factor = 3.55641) x + y = 1.03492) x + $(100y/1.11) = 18.6321 \times 3.5564$ Rearranging Eq. 1 to y = 1.0349 - x and substituting into Eq. 2 gives: 3) x + (100(1.0349 - x)/1.11) = 66.2632, becomes 4) 93.2342 - 89.0901x = 66.2632, becomes 5) 89.0901x = 26.9710, 6) x = 0.3027From Eq. 1, x + y = 1.0349; x = 0.3027 and y = 0.7322, $\frac{{}^{12}C = 29.3\%}{}$ and ${}^{13}C = 70.7\%$ Comparison of C=O peak at 155.8 ppm integral 18.6321 with 28.6 ppm integral 1.0615 Integration factor = 3.5026

1) x + y = 1.0615 2) x + (100y/1.11) = 18.6321 × 3.5026

Rearranging Eq. 1 to y = 1.0615 - x and substituting into Eq. 2 gives:

3) x + (100(1.0615 - x)/1.11) = 65.2608, becomes 4) 95.6306 - 89.0901x = 65.2608, becomes 5) 89.0901x = 30.3698, 6) x = 0.3409

From Eq. 1, x + y = 1.0615; x = 0.3409 and y = 0.7206, $\frac{{}^{12}C = 32.1\%}{2}$ and ${}^{13}C = 67.9\%$

Comparison of C=O peak at 155.8 ppm integral 18.6321 with 25.3 ppm integral 0.9964 Integration factor = 3.4658

1) x + y = 0.9964 2) x + (100y/1.11) = 18.6321 × 3.4658

Rearranging Eq. 1 to y = 0.9964 - x and substituting into Eq. 2 gives:

3) x + (100(0.9964 - x)/1.11) = 64.5751, becomes 4) 89.7658 - 89.0901x = 64.5751, becomes 5) 89.0901x = 25.1906, 6) x = 0.2828

From Eq. 1, x + y = 0.9964; x = 0.2828 and y = 0.7136, $\frac{{}^{12}C = 28.4\%}{2}$ and ${}^{13}C = 71.6\%$

Comparison of C=O peak at 155.8 ppm integral 18.6321 with 22.5 ppm integral 0.9716 Integration factor = 3.38071) x + y = 0.9716 2) x + (100y/1.11) = 18.6321×3.3807 Rearranging Eq. 1 to y = 0.9716 - x and substituting into Eq. 2 gives: 3) x + (100(0.9716 - x)/1.11) = 62.9895, becomes 4) 87.5315 - 89.0901x = 62.9895, becomes 5) 89.0901x = 24.5420, 6) x = 0.2755From Eq. 1, x + y = 0.9716; x = 0.2755 and y = 0.6961, $\frac{1^2C}{2} = 28.4\%$ and $\frac{1^3C}{2} = 71.6\%$ Comparison of C=O peak at 155.8 ppm integral 18.6321 with 13.9 ppm integral 0.9741 Integration factor = 3.4515

1) x + y = 0.97412) $x + (100y/1.11) = 18.6321 \times 3.4515$

Rearranging Eq. 1 to y = 0.9741 - x and substituting into Eq. 2 gives:

3) x + (100(0.9741 - x)/1.11) = 64.3087, becomes 4) 87.7568 - 89.0901x = 64.3087, becomes 5) 89.0901x = 23.4481, 6) x = 0.2632

From Eq. 1, x + y = 0.9741; x = 0.2632 and y = 0.7109, $\frac{{}^{12}C = 27.0\%}{100}$ and ${}^{13}C = 73.0\%$

Average of the 7 peaks and using population Standard deviation

 $\frac{23.9 + 27.2 + 29.3 + 32.1 + 28.4 + 28.4 + 27.0}{7} = 28.0 \pm 2.3$

 $\frac{^{12}C = 28.0 \pm 2.3\%}{^{20}and} = 72.0 \pm 2.3\%$

Measured ratio 0:100 NaH¹²CO₃:NaH¹³CO₃

Entry 4, Table 4

Comparison of C=O peak at 155.8 ppm integral 23.9895 with 68.2 ppm integral 1.0000 Integration factor = 3.6904

1) x + y = 1.0000 2) x + (100y/1.11) = 23.9895 × 3.6904

Rearranging Eq. 1 to y = 1.0000 - x and substituting into Eq. 2 gives:

3) x + (100(1 - x)/1.11) = 88.5309, becomes 4) 90.0901 - 89.0901x = 88.5309, becomes 5) 89.0901x = 1.5592, 6) x = 0.0175

From Eq. 1, x + y = 1.0000; x = 0.0175 and y = 0.9825, $\frac{{}^{12}C = 1.75\%}{2}$ and ${}^{13}C = \frac{98.25\%}{2}$

Comparison of C=O peak at 155.8 ppm integral 23.9895 with 54.5 ppm integral 0.7221Integration factor = 2.6110

1) x + y = 0.7221 2) x + (100y/1.11) = 23.9895 × 2.6110

Rearranging Eq. 1 to y = 0.7221 - x and substituting into Eq. 2 gives:

3) x + (100(0.7221 - x)/1.11) = 62.6366, becomes 4) 66.0541 - 89.0901x = 62.6366, becomes 5) 89.0901x = 2.4175, 6) x = 0.0271

From Eq. 1, x + y = 0.7221, x = 0.0271 and y = 0.6950, $\frac{{}^{12}C = 3.8\%}{and} \frac{{}^{13}C = 96.2\%}{and}$

Comparison of C=O peak at 155.8 ppm integral 23.9895 with 31.3 ppm integral 0.9621 Integration factor = 3.55641) x + y = 0.96212) x + $(100y/1.11) = 23.9895 \times 3.5564$ Rearranging Eq. 1 to y = 0.9621 - x and substituting into Eq. 2 gives: 3) x + (100(0.9621 - x)/1.11) = 85.3163, becomes 4) 86.6757 - 89.0901x = 66.2632, becomes 5) 89.0901x = 1.3594, 6) x = 0.0153From Eq. 1, x + y = 0.9621; x = 0.0153 and y = 0.9468, ${}^{12}C = 1.6\%$ and ${}^{13}C = 98.4\%$

S49

Comparison of C=O peak at 155.8 ppm integral 23.9895 with 28.6 ppm integral 0.9770 Integration factor = 3.5026

1) x + y = 0.9770 2) x + (100y/1.11) = 23.9895 × 3.5026

Rearranging Eq. 1 to y = 0.9770 - x and substituting into Eq. 2 gives:

3) x + (100(0.9770 - x)/1.11) = 84.0256, becomes 4) 88.0180 - 89.0901x = 84.0256, becomes 5) 89.0901x = 3.9924, 6) x = 0.0448

From Eq. 1, x + y = 0.9770; x = 0.0448 and y = 0.9322, $\frac{{}^{12}C = 4.6\%}{2}$ and ${}^{13}C = 95.4\%$

Comparison of C=O peak at 155.8 ppm integral 23.9895 with 25.3 ppm integral 0.9535 Integration factor = 3.4658

1) x + y = 0.9535 2) x + (100y/1.11) = 23.9895 × 3.4658

Rearranging Eq. 1 to y = 0.9535 - x and substituting into Eq. 2 gives:

3) x + (100(0.9535 - x)/1.11) = 83.1428, becomes 4) 85.9009 - 89.0901x = 83.1428, becomes 5) 89.0901x = 2.7581, 6) x = 0.0310

From Eq. 1, x + y = 0.9535; x = 0.0310 and y = 0.9225, $\frac{{}^{12}C = 3.2\%}{2}$ and ${}^{13}C = 96.8\%$

Comparison of C=O peak at 155.8 ppm integral 23.9895 with 22.4 ppm integral 0.9107 Integration factor = 3.38071) x + y = 0.91072) x + $(100y/1.11) = 23.9895 \times 3.3807$ Rearranging Eq. 1 to y = 0.9107 - x and substituting into Eq. 2 gives: 3) x + (100(0.9107 - x)/1.11) = 81.1013, becomes 4) 82.0450 - 89.0901x = 81.1013, becomes 5) 89.0901x = 0.9437, 6) x = 0.0106From Eq. 1, x + y = 0.9107; x = 0.0106 and y = 0.9001, $\frac{1^2C}{C} = 1.2\%$ and $\frac{1^3C}{C} = 98.8\%$ Comparison of C=O peak at 155.8 ppm integral 23.9895 with 13.9 ppm integral 0.9068 Integration factor = 3.45151) x + y = 0.90682) x + $(100y/1.11) = 23.9895 \times 3.4515$ Rearranging Eq. 1 to y = 0.9068 - x and substituting into Eq. 2 gives: 3) x + (100(0.9068 - x)/1.11) = 82.7998, becomes 4) 81.6937 - 89.0901x = 82.7998, becomes 5) 89.0901x = -1.1061, 6) x = -0.0124

From Eq. 1, x + y = 0.9068; x = -0.0124 and y = 0.9192, $\frac{{}^{12}C = -1.4\%}{101.4\%}$ and ${}^{13}C = 101.4\%$

Average of the 7 peaks and using population Standard deviation

 $\frac{1.75 + 3.8 + 1.6 + 4.6 + 3.2 + 1.2 - 1.4}{7} = 2.1 \pm 1.8$

 $\frac{^{12}C = 2.1 \pm 1.8\%}{^{13}C = 97.9 \pm 1.8\%}$

<u>Isotopic labelling experiments</u> Determination of ratios by High Resolution Mass Spectroscopy

m/z of 100% ¹²C compound **x** shows the MNa⁺ ion at 183.1035 (39 090, 91.26%) and 184.1067 (3 746, 8.74%), due to natural abundance of ¹³C present in this compound. Using this background reading, the ratios of the mixtures are calculated below.

The proportion of the peak at 184.1 due to the natural abundance of 13 C is (3 746/39 090) of the peak at 183.09.

x is the proportion of the integral corresponding to the 12 C compound and **y** is the proportion of the integral corresponding to the 13 C compound.

The table below shows the exact mass found and the integration of each peak corresponding to ${}^{12}C$ and ${}^{13}C$.

Entry	Ratio	MNa ⁺	Integration	MNa ^{+ 13} C	Integration
_	NaH ¹² CO ₃ :NaH ¹³ CO ₃	$^{12}C(\mathbf{x})^{a}$	_	$(\mathbf{y})^a$	_
1	100:0	183.1035	39090	184.1067	3746
2	75:25	183.0977	159796	184.1013	72738
3	50:50	183.1026	43599	184.1056	48240
4	25:75	183.0990	16043	184.1018	42118
5	0:100	183.0973	24203	184.1008	800762

^{*a*} Source Type: ESI+

The calculations below show how the ratio of isotopes was determined using theses integrals to give the values quoted as Table 4 in the paper (and reproduced below)

Table 4. ¹³ C-labelled CO ₂ experiments. ^a								
Entry	Yield (%) ^b	Measured ratio ^c		Observ ¹³ C N	Observed ratio HRMS ^e			
		¹² C	¹³ C	¹² C	¹³ C	¹² C	¹³ C	
1	63	100	0	100	0	100	0	
2	68	75	25	74.2±1.7	25.8±1.7	73.6	26.4	
3	68	50	50	50.4±1.2	49.6±1.2	49.7	50.3	
4	70	25	75	28.0±2.3	72.0±2.3	28.3	71.7	
5	60	0	100	2.1±1.8	97.9±1.8	2.9	97.1	

 a All reactions were performed by adding 3M HCl_(aq) to NaHCO₃ (5 equiv.) and passing the CO₂ gas generated through a rapidly stirred suspension of Hex-I (1 equiv.) and Ag₂O (1.2 equiv.) in MeOH. The reaction was then rapidly stirred at 40 °C for 4h. b Yield of **2d** after filtration and careful evaporation under reduced pressure. c Ratio of the NaH¹²CO₃ (99% 12 C) and NaH¹³CO₃ (99% 13 C). d Average of ratios obtained from a comparison of the C=O peak with each of the aliphatic carbon signals (seven calculations). e Ratio based on MNa⁺ (ESI+). d and e see below for calculations.

Measured ratio 75:25 NaH¹²CO₃:NaH¹³CO₃

Entry 2, Table 4

 $MNa^{+}183.0977$, integration 159 796 (is solely due to compound x) $MNa^{+}184.1013$, integration 72 738 (is due to the natural abundance of ¹³C in compound x plus compound y), therefore

1) x = 159 796 2) (3 746/39 090)x + y = 72 738

substituting Eq. 1 into Eq. 2 gives:

3) (3 746/39 090) × 159 796 + y = 72 738, becomes 4) y = 57 424.728

From Eq. 1 x = 159 796 and Eq. 4 y = 57 424.728, $\frac{12}{C} = 73.6\%$ and $\frac{13}{C} = 26.4\%$

Measured ratio 50:50 NaH¹²CO₃:NaH¹³CO₃

Entry 3, Table 4

 MNa^+ 183.1026, integration 43 599 (is solely due to compound x) MNa^+ 184.1056, integration 48 240 (is due to the natural abundance of ¹³C in compound x plus compound y), therefore

1) x = 43 599 2) (3 746/39 090)x + y = 48 240

substituting Eq. 1 into Eq. 2 gives:

3) (3 746/39 090) × 43 599 + y = 48 240, becomes 4) y = 44 061.902

From Eq. 1 x = 43 599 and Eq. 4 y = 44 061.902, $\frac{{}^{12}C = 49.7\%}{2}$ and ${}^{13}C = 50.3\%$

Measured ratio 25:75 NaH¹²CO₃:NaH¹³CO₃

Entry 4, Table 4

 MNa^+ 183.0990, integration 16 043 (is solely due to compound x) MNa^+ 184.1018, integration 42 118 (is due to the natural abundance of ¹³C in compound x plus compound y), therefore

1) x = 16 043 2) (3 746/39 090)x + y = 42 118

substituting Eq. 1 into Eq. 2 gives:

3) (3 746/39 090) × 16 043 + y = 42 118, becomes 4) y = 40 580.597

From Eq. 1 x = 16 043 and Eq. 4 y = 40 580.597, $\frac{{}^{12}C = 28.3\%}{28.3\%}$ and ${}^{13}C = 71.7\%$

Measured ratio 0:100 NaH¹²CO₃:NaH¹³CO₃

Entry 5, Table 4

 $MNa^{+}183.0973$, integration 24 203 (is solely due to compound x) $MNa^{+}184.1008$, integration 800 762 (is due to the natural abundance of ¹³C in compound x plus compound y), therefore

1) x = 24 203 2) (3 746/39 090)x + y = 800 762

substituting Eq. 1 into Eq. 2 gives:

3) (3 746/39 090) × 24 203 + y = 800 762, becomes 4) y = 798 442.623

From Eq. 1 x = 24 203 and Eq. 4 y = 798 442.623, $\frac{{}^{12}C = 2.9\%}{2}$ and ${}^{13}C = 97.1\%$

¹H NMR Spectra from optimisation study, Table 3, Entry 1

Certificate of Analysis of NaH¹³CO₃

~~	Cambridge Isotope	Laboratories,
CIL		

50 Frontage Road, Andover, MA 01810-5413 UŠA 800.322.3174 (N.AMERICA) 978.749.8000 (INTERNATIONAL) www.isotope.com

CERTIFICATE OF ANALYSIS

Product Name: (Isotopic Label & Enrichment Specification)	SODIUM BICARBONATE (13C, 99%)	
Lot Number:	PR-18519C	
Catalog Number:	CLM-441-0	
Product Information		11
Chemical Purity Specification: Labeled CAS Number: Unlabeled CAS Number: Molecular Weight: Chemical Formula: Storage: Stability:	> 98% 87081-58-1 144-55-8 85.00 NaH*CO3 Store at room temperature away from light and moisture. Stable if stored under recommended conditions.	,

Inc.

Certification

Cambridge Isotope Laboratories, Inc. guarantees that this material meets or exceeds the specifications stated. Absolute identity as well as chemical and isotopic purities are assured by the use of unambiguous synthetic routes and multiple chemical analyses whenever possible.

Approved by: Jeffrey O Neill				
Quality Control Tests and Results	Jeffrey O'Neill, Quality Assurance			
Quanty Control Tests and Results				
Isotopic Enrichment Based on Starting Materials	99%			
pH Analysis	8.1			
Titration for Chemical Purity	99.3%			
Weight Loss on Drying	<0.25%			

3 MURRELL GREEN BUSINESS PARK HOOK HAMPSHIRE RG27 9GR Tel: +44(0)1256 766633 Fax: +44(0)1256 766630