Supporting Information

Photoluminescent Electrospun Submicron Fibers of Hybrid Organosiloxane and Derived Silica

Jaba Mitra,^{a‡} Monoj Ghosh,^{a‡} Rajendra K. Bordia^b and Ashutosh Sharma^{*a}

^aDepartment of Chemical Engineering, Indian Institute of Technology, Kanpur; Kanpur-208016, India.

^bDepartment of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.Supporting Information

Email: ashutos@iitk.ac.in, Tel: +91-512-2597026

Fig.S1: FESEM micrographs of the products obtained by electrospinning at different volume ratios of the organic/pre-ceramic polymer blend: (a) PMHS, (b) 1:1, (c) 2:1, (d) 3:1, (e) 7:1, (f) 10:1. [Scale bars: (a) 200nm, (b)-(f) 20µm.]

Fig.S2: Confocal micrographs of silica fibers at different calcinations temperatures: (a) 550 $^{\circ}$ C, (b) 800 $^{\circ}$ C, (c) 1000 $^{\circ}$ C and (d) 1400 $^{\circ}$ C.

Fig.S3: TEM images ((a)-(c)) and SAED patterns (inset (b) and (c)) of fibers calcined at 800 °C ((a), (b),) and 1400 °C ((c)).

Fig.S4: EDX Spectrum of silica fibers at different calcinations temperatures: (a) 550 °C, (b) 800 °C, (c) 1000 °C and (d) 1400 °C.

20⁰	d-spacing (Å)	Crystal plane (hkl)
22.2	3.9703	(101)
28.8	3.09	(111)
31.6	2.8109	(102)
36.5	2.4608	(200)

Table S5: Crystal planes in silica calcined at 1400 °C.

Scherrer formula for calculation of the average crystallite size, incorporating the full width at half-maximum (FWHM) of the major diffraction peak corresponding to the (101) crystal plane

Crystallite size (avg.) = $\frac{k\lambda}{B\cos\theta}$ Lattice strain (mean lattice distortion)= $\frac{B}{4\tan\theta}$ $B_{size} = B_{obsv} - B_{stnd}$ $B_{strain} = (B_{obsv}^2 - B_{stnd}^2)^{0.5}$

where, 'B⁰(2 θ)' is the structural broadening, i.e. difference in the integral profile width between a standard and an unknown sample, and 'k', the Scherrer constant, ' θ ', the Bragg's diffraction angle and ' λ ', the wavelength of X-ray radiation used.

Computation of dislocation density (δ) following Williamson and Smallman's approach:

$$\delta = \frac{1}{D^2}$$

where, 'D' is the average crystallite size

Table S6: Crystallite size, dislocation density and lattice strain as a function of calcination temperature.

Calcination temperature (°C)	Crystallite size, D (nm)	Dislocation density, δ	Lattice strain (%)
800	12.2	0.0070	1.476
1000	15	0.004	1.205
1400	34	0.001	0.527

Fig. S7: PLE spectra of silica fibers calined at 550 °C at $\lambda_{emission}$ (a) 333 nm, (b) 410 nm, (c) 436 nm and (d) 537 nm.

Table S8: Lifetimes and their amplitudes of PMHS/PVP and silica fibers at different calcination temperatures, at $\lambda_{ex} = 267$ nm and $\lambda_{em} = 436$ nm.

Sample type	A ₁	τ_1 (ns)	A ₂	$\tau_2(ns)$
PMHS/PVP	0.869	2.594	0.131	14.310
silica@550 °C	0.990	2.092	0.010	13.606
silica@800 °C	0.996	1.678	0.004	12.582
silica@1000 °C	1.000	1.447	-	-
silica@1400 °C	0.999	1.343	0.001	11.216

The decays are fitted with biexponential functions:

 $I(t) = I(0)[A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)]$

 τ_1 and τ_2 are the two lifetimes and A_1 and A_2 are the respective amplitudes, such that $A_1 + A_2 = 1$.

Table S9: Lifetimes and their amplitudes of silica fibers calcined at 550 °C at different emission wavelengths at $\lambda_{ex} = 267$ nm.

$\lambda_{em}(nm)$	A ₁	τ_1 (ns)	A ₂	$\tau_2(ns)$
333	1	1.424	-	-
410	0.896	2.059	0.014	13.845
436	0.990	2.092	0.01	13.606
537	1	2.266	-	-

Table S10: Lifetimes and their amplitudes of silica fibers calcined at 550 ^{o}C at λ_{ex} and λ_{em} .

$\lambda_{em}(nm)$	$\lambda_{ex}(nm)$	A ₁	τ_1 (ns)	A ₂	$\tau_2(ns)$
436	267	0.990	2.092	0.01	13.606
	385	0.999	1.679	0.001	12.316
537	267	1	2.266	-	-
	385	1.000	2.009	-	-
	488	1.000	1.626	-	-

Fig S11: EPR characterization of (a) PMHS/PVP hybrid and silica fibers: (b) 550 °C, (c) 800 °C, (d) 1000 °C, (e) 1400 °C and (f) (a)-(e) superimposed.