Supporting Information

Photoluminescent Electrospun Submicron Fibers of Hybrid Organosiloxane and Derived Silica

Jaba Mitra, ${ }^{a \ddagger}$ Monoj Ghosh ${ }^{a \ddagger}$ Rajendra K. Bordia ${ }^{b}$ and Ashutosh Sharma* ${ }^{a}$
${ }^{a}$ Department of Chemical Engineering, Indian Institute of Technology, Kanpur; Kanpur-208016, India.
${ }^{b}$ Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.Supporting Information
Email: ashutos@iitk.ac.in, Tel: +91-512-2597026

Fig.S1: FESEM micrographs of the products obtained by electrospinning at different volume ratios of the organic/pre-ceramic polymer blend: (a) PMHS, (b) 1:1, (c) 2:1, (d) 3:1, (e) 7:1, (f) 10:1. [Scale bars: (a) 200 nm , (b)-(f) $20 \mu \mathrm{~m}$.]

Fig.S2: Confocal micrographs of silica fibers at different calcinations temperatures: (a) $550{ }^{\circ} \mathrm{C}$, (b) $800^{\circ} \mathrm{C}$, (c) $1000^{\circ} \mathrm{C}$ and (d) $1400^{\circ} \mathrm{C}$.

Fig.S3: TEM images ((a)-(c)) and SAED patterns (inset (b) and (c)) of fibers calcined at $800^{\circ} \mathrm{C}$ ((a), (b),) and $1400{ }^{\circ} \mathrm{C}((\mathrm{c}))$.

Fig.S4: EDX Spectrum of silica fibers at different calcinations temperatures: (a) $550^{\circ} \mathrm{C}$, (b) 800 ${ }^{\circ} \mathrm{C}$, (c) $1000^{\circ} \mathrm{C}$ and (d) $1400^{\circ} \mathrm{C}$.

Table S5: Crystal planes in silica calcined at $1400^{\circ} \mathrm{C}$.

$\mathbf{2 \theta}^{\mathbf{0}}$	d-spacing (£̊)	Crystal plane (hkl)
22.2	3.9703	(101)
28.8	3.09	(111)
31.6	2.8109	(102)
36.5	2.4608	(200)

Scherrer formula for calculation of the average crystallite size, incorporating the full width at half-maximum (FWHM) of the major diffraction peak corresponding to the (101) crystal plane

Crystallite size (avg.) $=\frac{\mathrm{k} \lambda}{\mathrm{B} \cos \theta}$
Lattice strain (mean lattice distortion) $=\frac{\mathrm{B}}{4 \tan \theta}$
$B_{\text {size }}=B_{\text {obsv }}-B_{\text {stnd }}$
$\mathrm{B}_{\text {strain }}=\left(\mathrm{B}_{\text {obsv }}^{2}-\mathrm{B}_{\text {strd }}^{2}\right)^{0.5}$
where, ' $\mathrm{B}^{0}(2 \theta)$ ' is the structural broadening, i.e. difference in the integral profile width between a standard and an unknown sample, and ' k ', the Scherrer constant, ' θ ', the Bragg's diffraction angle and ' λ ', the wavelength of X-ray radiation used.

Computation of dislocation density (δ) following Williamson and Smallman's approach:
$\delta=\frac{1}{D^{2}}$
where, ' D ' is the average crystallite size

Table S6: Crystallite size, dislocation density and lattice strain as a function of calcination temperature.

Calcination temperature $\left({ }^{\circ} \mathrm{C}\right)$	Crystallite size, D (nm)	Dislocation density, δ	Lattice strain (\%)
800	12.2	0.0070	1.476
1000	15	0.004	1.205
1400	34	0.001	0.527

Fig. S7: PLE spectra of silica fibers calined at $550^{\circ} \mathrm{C}$ at $\lambda_{\text {emission }}$ (a) 333 nm , (b) 410 nm , (c) 436 nm and (d) 537 nm .

Table S8: Lifetimes and their amplitudes of PMHS/PVP and silica fibers at different calcination temperatures, at $\lambda_{\mathrm{ex}}=267 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=436 \mathrm{~nm}$.

Sample type	A_{1}	$\tau_{1}(\mathrm{~ns})$	A_{2}	$\tau_{2}(\mathrm{~ns})$
PMHS/PVP	0.869	2.594	0.131	14.310
silica $@ 550{ }^{\circ} \mathrm{C}$	0.990	2.092	0.010	13.606
silica $@ 00{ }^{\circ} \mathrm{C}$	0.996	1.678	0.004	12.582
silica $@ 1000{ }^{\circ} \mathrm{C}$	1.000	1.447	-	-
silica $@ 1400^{\circ} \mathrm{C}$	0.999	1.343	0.001	11.216

The decays are fitted with biexponential functions:
$I(t)=\mathrm{I}(0)\left[\mathrm{A}_{1} \exp \left(-\mathrm{t} / \tau_{1}\right)+\mathrm{A}_{2} \exp \left(-\mathrm{t} / \tau_{2}\right)\right]$
τ_{1} and τ_{2} are the two lifetimes and A_{1} and A_{2} are the respective amplitudes, such that $\mathrm{A}_{1}+\mathrm{A}_{2}=1$.
Table S9: Lifetimes and their amplitudes of silica fibers calcined at $550^{\circ} \mathrm{C}$ at different emission wavelengths at $\lambda_{\mathrm{ex}}=267 \mathrm{~nm}$.

$\lambda_{\mathrm{em}}(\mathrm{nm})$	A_{1}	$\tau_{1}(\mathrm{~ns})$	A_{2}	$\tau_{2}(\mathrm{~ns})$
333	1	1.424	-	-
410	0.896	2.059	0.014	13.845
436	0.990	2.092	0.01	13.606
537	1	2.266	-	-

Table S10: Lifetimes and their amplitudes of silica fibers calcined at $550^{\circ} \mathrm{C}$ at λ_{ex} and λ_{em}.

$\lambda_{\text {em }}(\mathrm{nm})$	$\lambda_{\text {ex }}(\mathrm{nm})$	A_{1}	$\tau_{1}(\mathrm{~ns})$	A_{2}	$\tau_{2}(\mathrm{~ns})$
436	267	0.990	2.092	0.01	13.606
	385	0.999	1.679	0.001	12.316
537	267	1	2.266	-	-
	385	1.000	2.009	-	-
	488	1.000	1.626	-	-

Fig S11: EPR characterization of (a) PMHS/PVP hybrid and silica fibers: (b) $550{ }^{\circ} \mathrm{C}$, (c) $800^{\circ} \mathrm{C}$, (d) $1000^{\circ} \mathrm{C}$, (e) $1400^{\circ} \mathrm{C}$ and (f) (a)-(e) superimposed.

