Supporting Information

Selective Synthesis of Oxygen-containing Heterocycles *via* Tandem Reactions of 1,2-Allenic Ketones with Ethyl 4-Chloroacetoacetate

Qiang Wang,^{a, b} Zhouqing Xu^b and Xuesen Fan^a*

^a School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

^b School of Physics-Chemistry, Henan Polytechnic University, Jiaozuo, Henan, 454003, P. R. China. E-mail: xuesen.fan@htu.cn; xuesen.fan@yahoo.com

Table of Contents

I. General experimental information	P2
II. Experimental procedures and spectroscopic data	P3-15
III. Copies of ¹ H and ¹³ C NMR spectra of 3a-3s, 4a-4n, 4aa, 5a-5d and 6a	P16-54
IV. X-ray crystal structures of 3f, (E)-4aa and 5c	P55-57
V. References	P58

I. General Experimental Information

The ¹H, ¹³C NMR spectra were recorded at 400 MHz or 100 MHz, respectively. Chemical shifts were reported in ppm from CDCl₃ as standard. Multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); dd (doublet of doublets); td (triplet of doublets); qd (quartet of doublets); br s (broad singlet), etc. and coupling constants were given in Hz. The conversion of starting materials were monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm) and components were visualized by observation under UV light (254 and 365 nm). Mass spectra were obtained using a Waters Acquity SQ HPLC-mass spectrometer. High resolution mass spectra (HRMS) were performed on a time-of-flight (microTOF) mass spectrometer.

II. Experimental Procedures and Spectroscopic Data

1-Aryl substituted allenic ketones were prepared through oxidation of the corresponding homopropargyl alcohols,¹ which were prepared through zinc promoted propargylation of aldehydes.² 1,4-Disubsituted allenic ketones were prepared from 1-(triphenylphosphoranylidene)-2-propanone or 2-(triphenyl phosphoranylidene)acetophenone with phenylacetyl chloride based on a literature procedure.³

1. Typical procedure for the preparation of ethyl 5-methyl-3-oxo-7-phenyl-2,3-dihydrooxepine-4carboxvlate (3a)

To a flask containing 1-phenylbuta-2,3-dien-1-one (**1a**, 1 mmol) and ethyl 4-chloroacetoacetate (**2**, 1.2 mmol) in CH₃CN (5 mL) were added anhydrous K₂CO₃ (1.0 mmol). The solution was stirred at room temperature for 1 h. The reaction then was quenched with aqueous NH₄Cl and extracted with ethyl acetate (5 mL × 3). The combined organic phases were dried, filtered and concentrated under vacuum. The residue was purified by column chromatography over silica gel using ethyl acetate/hexane (v/v = 1:10) as eluent to give **3a** (68%). **3b-3s** were obtained in a similar manner.

Ethyl 5-methyl-3-oxo-7-phenyl-2,3-dihydrooxepine-4-carboxylate (3a)

 $\int_{C_{0,f} \in I} \int_{C_{0,f} \in$

Ethyl 5-methyl-3-oxo-7-p-tolyl-2,3-dihydrooxepine-4-carboxylate (3b)

^{Me} ¹H NMR (400 MHz, CDCl₃) δ : 7.59 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 7.6 Hz, 2H), $\int_{CO_{2Et}} \int_{CO_{2Et}} \int_{CO_{2Et}} 5.98 (s, 1H), 4.66 (s, 2H), 4.33 (q, <math>J = 7.2$ Hz, 2H), 2.38 (s, 3H), 2.19 (s, 3H), 1.34 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.2, 167.8, 165.4, 149.7, 141.9, 133.9, 130.6, 129.5, 127.2, 106.2, 77.5, 61.4, 24.8, 21.4, 14.1. HRMS (ESI) Calcd for C₁₇H₁₉O₄: [M+H]⁺ 287.1283, found: 287.1288. Ethyl 7-(4-methoxyphenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3c)

⁷ $^{\circ}_{CO_2Et}$ ¹H NMR (400 MHz, CDCl₃) δ : 7.63 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 5.91 (s, 1H), 4.63 (s, 2H), 4.31 (q, *J* = 6.8 Hz, 2H), 3.82 (s, 3H), 2.18 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 186.9, 167.9, 165.3, 162.2, 150.2, 133.4, 129.0, 125.7, 114.1, 105.3, 77.4, 61.3, 55.4, 24.9, 14.1. HRMS (ESI) Calcd for C₁₇H₁₉O₅: [M+H]⁺ 303.1232, found: 303.1240.

Ethyl 7-(4-fluorophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3d) ¹H NMR (400 MHz, CDCl₃) δ : 7.67-7.70 (m, 2H), 7.06-7.10 (m, 2H), 5.94 (s, 1H), 4.66 (s, 2H), 4.32 (q, *J* = 7.2 Hz, 2H), 2.19 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.0, 167.6, 163.9, 163.3, 149.3, 134.3, 129.7, 129.6, 129.4, 129.3, 115.9, 115.7, 106.6, 77.5, 61.5, 24.8, 14.1. HRMS (ESI) Calcd for C₁₆H₁₆FO₄: [M+H]⁺ 291.1033, found: 291.1039.

Ethyl 7-(4-chlorophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3e) ^{CI} \longrightarrow ^IH NMR (400 MHz, CDCl₃) δ : 7.62 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 5.98 (s, 1H), 4.65 (s, 2H), 4.32 (q, J = 7.2 Hz, 2H), 2.19 (s, 3H), 1.33 (t, J = 7.6 Hz, 3H). ^{I3}C NMR (100 MHz, CDCl₃) δ : 187.1, 167.5, 163.6, 148.9, 137.3, 134.6, 131.9, 128.9, 128.3, 107.1, 77.4, 61.5, 24.8, 14.1. MS(ESI): m/z 329.2, 329.5 [M+Na]⁺.HRMS (ESI) Calcd for C₁₆H₁₆ClO₄: [M+H]⁺ 307.0737, found: 307.0743.

Ethyl 7-(4-bromophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3f)¹H NMR (400 MHz, CDCl₃) δ : 7.51-7.56 (m, 4H), 5.99 (s, 1H), 4.66 (s, 2H), , 4.32 (q, J = 6.8 Hz, 2H), 2.19 (s, 3H), 1.33 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.1, 167.5, 163.7, 149.0, 134.6, 132.3, 131.9, 128.5, 125.8, 107.1, 77.4, 61.5, 24.8, 14.2. MS(ESI): m/z 373.3, 375.4 [M+Na]⁺. HRMS (ESI) Calcd for C₁₆H₁₆BrO₄: [M+H]⁺ 351.0232, found: 351.0239.

Ethyl 5-methyl-3-oxo-7-(4-(trifluoromethyl)phenyl)-2,3-dihydrooxepine-4carboxylate (3g)

¹H NMR (400 MHz, CDCl₃) δ : 7.80 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.6 Hz, 2H), 6.07

(s, 1H), 4.68 (s, 2H), 4.33 (q, J = 7.2 Hz, 2H), 2.21 (s, 3H), 1.34 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.2, 167.3, 162.8, 148.4, 136.9, 135.3, 132.2, 127.1, 125.65, 125.61, 125.58, 108.5, 77.5, 24.7, 14.1. HRMS (ESI) Calcd for C₁₇H₁₆F₃O₄: [M+H]⁺ 341.1001, found: 341.1011.

Ethyl 7-(3-fluorophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3h)

¹H NMR (400 MHz, CDCl₃) δ : 7.47 (d, J = 8.0 Hz, 1H), 7.34-7.39 (m, 2H), 7.13 (t, J = 8.0 Hz, 1H), 6.00 (s, 1H), 4.65 (s, 2H), 4.32 (q, J = 7.6 Hz, 2H), 2.18 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.2, 167.4, 164.0, 163.2, 161.6, 148.7, 135.74, 135.66, 134.89, 130.33, 130.26, 122.57, 122.54, 117.98, 117.78, 113.9, 113.7, 107.7, 77.4, 61.5, 14.1. HRMS (ESI) Calcd for C₁₆H₁₆FO₄: [M+H]⁺ 291.1033, found: 291.1037.

Ethyl 7-(3-chlorophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3i) ¹H NMR (400 MHz, CDCl₃) δ : 7.66 (s, 1H), 7.57 (d, J = 7.6 Hz, 1H) 7.40 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 4.66 (s, 2H), 5.99 (s, 1H), 4.33 (q, J = 7.6 Hz, 2H), 2.19 (s, 3H), 1.34 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.2, 167.4, 163.01, 148.7, 135.3, 134.9, 134.8, 130.9, 129.9, 126.9, 125.0, 107.7, 77.5, 61.5, 24.7, 14.1. HRMS (ESI) Calcd for C₁₆H₁₆ClO₄: [M+H]⁺ 307.0737, found: 307.0741.

Ethyl 7-(3-bromophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3j)

¹H NMR (400 MHz, CDCl₃) δ : 7.82 (s, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 8.0 Hz, $\int_{C_{0_2Et}}^{0}$ 1H), 7.28 (t, J = 7.6 Hz, 1H), 5.98 (s, 1H), 4.66 (s, 2H), 4.33 (q, J = 6.8 Hz, 2H), 2.19 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.2, 162.9, 148.6, 148.6, 135.5, 134.9, 133.8, 130.2, 129.9, 125.5, 122.9, 107.7, 77.5, 61.5, 24.7, 14.1. HRMS (ESI) Calcd for C₁₆H₁₆BrO₄: [M+H]⁺ 351.0232, found: 351.0238.

Ethyl 5-methyl-3-oxo-7-m-tolyl-2, 3-dihydrooxepine-4-carboxylate (3k)

^o ^lH NMR (400 MHz, CDCl₃) δ : 7.48-7.50 (m, 2H), 7.24-7.31 (m, 2H), 5.99 (s, 1H), 4.65 ^o ^{co}_{CO₂Et} (s, 2H), 4.33 (q, J = 6.8 Hz, 2H), 2.38 (s, 3H), 2.19 (s, 3H), 1.34 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 187.2, 167.7, 165.3, 149.5, 138.4, 134.2, 133.4, 132.0, 128.6, 127.7, 124.3, 106.9, 77.5, 61.4, 24.8, 21.4, 14.1. HRMS (ESI) Calcd for C₁₇H₁₉O₄: [M+H]⁺ 287.1283, found: 287.1289.

Ethyl 7-(3,4-dimethoxyphenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (31)

¹H NMR (400 MHz, CDCl₃) δ : 7.33 (dd, $J_1 = 2.0$ Hz, $J_2 = 10.4$ Hz, 1H), 7.16 (d, J = 1.6 Hz, 1H), 6. 88 (d, J = 8.8 Hz, 1H), 5.92 (s, 1H), 4.67 (s, 2H), 4.33 (q, J = 7.2 Hz, 2H), 3.92 (s, 6H), 2.20 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 186.9, 167.8, 165.3, 151.9, 149.9, 148.9, 133.5, 125.9, 121.1, 110.9, 109.8, 105.5, 77.5, 65.9, 61.4, 24.9, 14.1. HRMS (ESI) Calcd for C₁₈H₂₁O₆: [M+H]⁺ 333.1338, found: 333.1343.

Ethyl 7-(2-fluorophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3n)

¹H NMR (400 MHz, CDCl₃) δ : 7.58-7.62 (m, 1H), 7.36-7.39 (m, 1H), 7.15-7.19 (m, 1H), $\int_{CO_2Et}^{0}$ 7.07-7.12 (m, 1H), 6.08 (s, 1H), 4.65 (s, 2H), 4.32 (q, *J* = 6.8 Hz, 2H), 2.16 (s, 3H), 1.33 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.9, 167.5, 161.7, 159.8, 159.8, 159.2, 148.7, 134.9, 132.4, 132.3, 130.1, 124.4, 124.3, 122.2, 122.0, 116.6, 116.4, 112.4, 112.3, 77.5, 61.4, 24.7, 14.1. MS(ESI): m/z 313.6 [M+Na]⁺. HRMS (ESI) Calcd for C₁₆H₁₆FO₄: [M+H]⁺ 291.1033, found: 291.1043.

Ethyl 7-(2-chlorophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3o) ¹H NMR (400 MHz, CDCl₃) δ : 7.39-7.41 (m, 2H), 7.32-7.36 (m, 1H), 7.25-7.29 (m, 1H), 5.68 (s, 1H), 4.69 (s, 2H), 4.32 (q, J = 6.8 Hz, 2H), 2.14 (s, 3H), 1.33 (t, J = 7.6Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.5, 167.4, 148.3, 134.9, 134.1, 133.9, 131.6, 131.4, 130.4, 126.8, 112.0, 77.4, 61.5, 24.5, 14.1. HRMS (ESI) Calcd for C₁₆H₁₆ClO₄: [M+H]⁺ 307.0737, found: 307.0744.

Ethyl 7-(2-bromophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3p) ¹H NMR (400 MHz, CDCl₃) δ : 7.57 (d, J = 7.6 Hz, 1H), 7.37 (dd, J_I = 1.6 Hz, J_2 = 7.6 Hz, 1H), 7.29 (t, J = 7.2 Hz, 1H), 7.24 (dt, J_I = 1.6 Hz, J_2 = 7.6 Hz, 1H), 5.61 (s, 1H), 4.69 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 2.12 (s, 3H), 1.31 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.3, 167.4, 164.9, 148.3, 136.1, 134.9, 133.5, 131.7, 127.4, 123.1, 111.6, 77.6, 61.4, 30.8, 24.5, 14.1. HRMS (ESI) Calcd for C₁₆H₁₆BrO₄: [M+H]⁺ 351.0232, found: 351.0243.

Ethyl 5-methyl-7-(naphthalen-1-yl)-3-oxo-2,3-dihydrooxepine-4-carboxylate (3q) ¹H NMR (400 MHz, CDCl₃) δ: 8.05 (d, *J* = 8.4 Hz, 1H), 7.86-7.92 (m, 2H), 7.44-7.60 (m, 4H), 5.81 (s, 1H), 4.82 (s, 2H), 4.38 (q, *J* = 6.8 Hz, 2H), 2.21 (s, 3H), 1.38 (t, *J* = 6.8

Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 186.7, 167.7, 166.5, 149.2, 134.4, 133.7, 132.7, 131.3, 131.1, 128.7, 128.6, 127.2, 126.3, 124.9, 124.9, 111.8, 77.5, 61.5, 24.8, 14.2. HRMS (ESI) Calcd for C₂₀H₁₉O₄: [M+H]⁺ 323.1283, found: 323.1291.

Ethyl 7-benzyl-5-methyl-3-oxo-2,3-dihydrooxepine-4-carboxylate (3r) $f_{CO_{2}Et}$ ¹H NMR (400 MHz, CDCl₃) δ : 7.30-7.34 (m, 2H), 7.21-7.28 (m, 3H), 5.29 (s, 1H), 4.42 (s, 2H), 4.29 (q, *J* = 7.2 Hz, 2H), 3.56 (s, 2H), 2.03 (s, 3H), 1.31 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 187.0, 168.9, 167.6, 148.9, 136.2, 133.9, 128.9, 128.7, 127.1, 108.9, 77.1, 61.3, 42.1, 24.5, 14.1. HRMS (ESI) Calcd for C₁₇H₁₉O₄: [M+H]⁺287.1283, found: 287.1289.

Ethyl 5-methyl-3-oxo-7-phenethyl-2,3-dihydrooxepine-4-carboxylate (3s)

¹H NMR (400 MHz, CDCl₃) δ: 7.25-7.29 (m, 2H), 7.13-7.20 (m, 3H), 5.19 (s, 1H), 4.41 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 2.85 (t, J = 8.0 Hz, 2H), 2.57 (t, J = 7.6 Hz, 2H), 1.98 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 186.9, 169.5, 167.6, 149.2, 140.2, 133.6, 128.5, 128.3, 126.3, 108.6, 76.8, 61.3, 37.6, 33.4, 24.4, 14.1. HRMS (ESI) Calcd for C₁₈H₂₁O₄: [M+H]⁺ 301.1440, found: 301.1449.

2. Typical procedure for the preparation of ethyl 2,5-dimethyl-2-(2-oxo-2-phenylethyl)-7-phenyl benzo[d][1,3]dioxole-4-carboxylate (4a)

To a flask containing 1-phenylbuta-2,3-dien-1-one (1a, 2.0 mmol) and ethyl 4-chloroacetoacetate (2, 1.0 mmol) in toluene (5 mL) were added anhydrous K_2CO_3 (2.5 mmol) and tetrabutyl ammonium bromide (0.05 mmol). The solution was stirred at room temperature for 1 h. The reaction then was quenched with aqueous NH₄Cl and extracted with ethyl acetate (5 mL × 3). The combined organic phases were dried, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel eluenting with ethyl acetate/hexane (v/v: 1/10) to give 4a (62%). 4b-4n were obtained in a similar manner.

Ethyl 2,5-dimethyl-2-(2-oxo-2-phenylethyl)-7-phenylbenzo[*d*][1,3]dioxole-4carboxylate (4a)

^{Me} $f_{O_{2}EH}$ ¹H NMR (400 MHz, CDCl₃) δ : 7.90 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.34-7.41 (m, 4H), 6.89 (s, 1H), 4.25-4.33 (m, 2H), 3.64 (d, J = 14.8 Hz, 1H), 3.63 (d, J = 14.8 Hz, 1H), 2.49 (s, 3H), 1.93 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.1, 165.4, 147.9, 142.8, 137.2, 135.1, 133.2, 131.6, 128.6, 128.5, 128.5, 127.9, 127.8, 124.4, 122.8, 117.8, 112.9, 60.7, 46.9, 24.8, 20.8,14.2. HRMS (ESI) Calcd for C₂₆H₂₅O₅: [M+H]⁺ 417.1702, found: 417.1711.

Ethyl 7-(4-fluorophenyl)-2-(2-(4-fluorophenyl)-2-oxoethyl)-2,5-dimethyl benzo[*d*][1,3]dioxole-4-carboxylate (4b)

Ethyl 7-(4-chlorophenyl)-2-(2-(4-chlorophenyl)-2-oxoethyl)-2,5-dimethyl benzo[*d*][1,3]dioxole-4-carboxylate (4c)

^{Me} \downarrow_{CO_2EI} ¹H NMR (400 MHz, CDCl₃) δ : 7.78-7.80 (m, 2H), 7.51-7.54 (m, 2H), 7.28-7.34 (m, 4H), 6.82 (s, 1H), 4.30 (q, *J* = 7.6 Hz, 2H), 3.61 (d, *J* = 14.8 Hz, 1H), 3.54 (d, *J* = 14.0 Hz, 1H), 2.45 (s, 3H), 1.91 (s, 3H), 1.30 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 193.9, 165.12 147.8, 142.6, 139.8, 135.4, 133.9, 133.4, 131.9, 130.0, 129.1, 128.7, 123.1, 122.4, 117.7, 113.3, 60.8, 47.0, 24.9, 20.8, 14.2. HRMS (ESI) Calcd for C₂₆H₂₃Cl₂O₅: [M+H]⁺ 485.0923, found: 485.0932.

Ethyl 7-(4-bromophenyl)-2-(2-(4-bromophenyl)-2-oxoethyl)-2,5-dimethyl benzo[*d*][1,3]dioxole-4-carboxylate (4d)

^{Me} \downarrow_{CO_2E1} ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, J = 8.0 Hz, 2H), 7.42-7.48 (m, 6H), 6.80 (s, 1H), 4.28 (q, J = 6.8 Hz, 2H), 3.58 (d, J = 14.4 Hz, 1H), 3.51 (d, J = 14.4 Hz, 1H), 2.43 (s, 3H), 1.89 (s, 3H), 1.28 (t, J = 6.8 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ : 194.1, 165.1, 147.8, 142.6, 135.8, 133.8, 131.9, 131.7, 131.7, 130.1, 129.4, 128.5, 123.1, 122.3, 122.2, 117.7, 113.3, 60.8, 47.0, 24.8, 20.8, 14.2. HRMS (ESI) Calcd for C₂₆H₂₃Br₂O₅: [M+H]⁺ 572.9912, found: 572.9921.

Ethyl 2,5-dimethyl-2-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-7-(4-(tri fluoromethyl)phenyl)benzo[*d*][1,3]dioxole-4-carboxylate (4e)

Ethyl 7-(3-fluorophenyl)-2-(2-(3-fluorophenyl)-2-oxoethyl)-2,5-dimethyl benzo[*d*][1,3] dioxole-4-carboxylate (4f)

 $\stackrel{\text{Me}}{\longrightarrow} \stackrel{\text{O}}{\longrightarrow} \stackrel{\text{I}}{\longrightarrow} \stackrel{\text{I}}{$

(s, 1H), 6.97-7.01 (m, 1H), 7.16-7.21 (m, 1H), 7.29-7.35 (m, 3H), 7.39 (d, J = 7.6 Hz, 1H), 7.56-7.59 (m, 1H), 7.65 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 193.8, 165.2, 164.0, 163.9, 161.6, 161.5, 147.9, 142.8, 139.2, 139.1, 137.1, 137.05, 131.9, 130.2, 130.1, 130.01, 129.9, 124.4, 124.39,123.48, 123.45, 123.0, 120.4, 120.2, 117.8, 115.3, 115.0, 114.88, 114.86, 114.7, 113.4, 60.8, 47.1, 24.9, 20.8, 14.1. HRMS (ESI) Calcd for C₂₆H₂₃F₂O₅: [M+H]⁺ 453.1514, found: 453.1520.

Ethyl 7-(3-chlorophenyl)-2-(2-(3-chlorophenyl)-2-oxoethyl)-2,5-dimethyl

¹H NMR (400 MHz, CDCl₃) δ : 7.82-7.83 (m, 1H), 7.70-7.73 (m, 1H), 7.56-7.57 (m, 1H), 7.42-7.49 (m, 2H), 7.24-7.30 (m, 3H), 6.83 (s, 1H), 4.27-4.34 (m, 2H), 3.64 (d, *J* = 14.4 Hz, 1H), 3.57 (d, *J* = 14.4 Hz, 1H), 2.45 (s, 3H), 1.92 (s, 3H), 1.30 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 193.8, 165.1, 147.9, 142.7, 138.6, 136.7, 134.9, 134.4, 133.1, 131.9, 129.8, 129.7, 128,5, 127.9, 127.8, 126.7, 126.1, 122.8, 122.5, 117.8, 113.4, 60.8, 47.0, 24.9, 20.8, 14.2. HRMS (ESI) Calcd for C₂₆H₂₃Cl₂O₅: [M+H]⁺ 485.0923, found: 485.0929.

Ethyl 7-(3-bromophenyl)-2-(2-(3-bromophenyl)-2-oxoethyl)-2,5-dimethyl $= \int_{a}^{Br} benzo[d][1,3]dioxole-4-carboxylate (4h)$

^{Me} $rac{}_{CO_2Et}$ ¹H NMR (400 MHz, CDCl₃) δ : 7.99 (t, J = 2.0 Hz, 1H), 7.76-7.78 (m, 1H), 7.72 (t, J = 1.6 Hz, 1H), 7.59-7.62 (m, 1H), 7.51-7.54 (m, 1H), 7.42-7.45 (m, 1H), 7.22 (q, J = 7.6 Hz, 2H), 6.83 (d, J = 0.8 Hz, 1H), 4.28-4.34 (m, 2H), 3.62 (d, J = 14.4 Hz, 1H), 3.55 (d, J = 14.4 Hz, 1H), 2.46 (s, 3H), 1.92 (s, 3H), 1.30 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 193.8, 165.1, 147.9, 142.7, 138.8, 137.0, 136.1, 131.8, 131.4, 130.9, 130.6, 130.0, 127.1, 126.6, 122.9, 122.8, 122.7, 122.5, 117.8, 113.5, 60.9, 47.0, 24.9, 20.8, 14.2. HRMS (ESI) Calcd for C₂₆H₂₃Br₂O₅: [M+H]⁺ 572.9912, found: 572.9919.

Ethyl 2,5-dimethyl-2-(2-oxo-2-m-tolylethyl)-7-m-tolylbenzo[*d*][1,3]dioxole-4carboxylate (4i)

¹H NMR (400 MHz, CDCl₃) δ : 7.72 (d, J = 6.8 Hz, 2H), 7.43 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 4.8 Hz, 2H), 7.13 (d, J = 7.2 Hz, 1H), 6.90 (d, J = 0.4 Hz, 1H), CO₂Et

4.27-4.35 (m, 2H), 3.67 (d, J = 14.4 Hz, 1H), 3.61 (d, J = 14.4 Hz, 1H), 2.50 (s, 3H), 2.35 (s, 3H), 2.33 (s, 3H), 1.95 (s, 3H), 1.30 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 195.4, 165.5, 148.0, 142.8, 138.3, 138.1, 137.3, 135.0, 134.0, 131.6, 129.1, 128.7, 128.5, 128.4, 125.9, 125.1, 124.6, 122.8, 117.8, 112.8, 60.7, 46.9, 24.8, 21.5, 21.2, 20.9, 14.2. HRMS (ESI) Calcd for C₂₈H₂₉O₅: [M+H]⁺ 445.2015, found: 445.2020.

Ethyl 7-(4-methoxyphenyl)-2-(2-(4-methoxyphenyl)-2-oxoethyl)-2,5dimethylbenzo[*d*][1,3]dioxole-4-carboxylate (4j)

¹H NMR (400 MHz, CDCl₃) δ: 7.85-7.89 (m, 2H), 7.55-7.59 (m, 2H), 6.87-6.91(m, 2H), 6.85 (s, 1H), 6.78-6.82 (m, 2H), 4.26-4.32 (m, 2H), 3.81 (s, 3H),

3.80 (s, 3H), 3.59 (d, J = 14.4 Hz, 1H), 3.52 (d, J = 14.4 Hz, 1H), 2.47 (s, 3H), 1.91 (s, 3H), 1.28 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 193.7, 165.5, 163.7, 159.4, 148.0, 142.4, 131.6, 131.1, 130.4, 129.1, 127.5, 124.2, 122.2, 117.7, 113.9, 113.6, 112.3, 60.7, 55.4, 55.2, 46.8, 24.7, 20.9, 14.1. HRMS (ESI) Calcd for C₂₈H₂₉O₇: [M+H]⁺ 477.1913, found: 477.1921.

Ethyl 7-(2-methoxyphenyl)-2-(2-(2-methoxyphenyl)-2-oxoethyl)-2,5-dimethyl benzo[*d*][1,3]dioxole-4-carboxylate (4k)

^H_{CO₂El} ¹H NMR (400 MHz, CDCl₃) δ : 7.58-7.60 (m, 1H), 7.38-7.42 (m, 1H), 7.30-7.35 (m, 1H), 7.25-7.27 (m, 1H), 6.90-7.00 (m, 3H), 6.85 (d, J = 8.4 Hz, 1H), 6.72 (s, 1H), 4.24-4.32 (m, 2H), 3.80 (d, J = 15.2 Hz, 1H), 3.64 (d, J = 15.2 Hz, 1H), 3.77 (s, 3H) 3.74 (s, 3H), 2.42 (s, 3H), 1.87 (s, 3H), 1.29 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 197.2, 165.7, 158.4, 156.7, 147.7, 143.6, 133.6, 130.8, 130.3, 129.4, 128.6, 124.7, 124.7, 121.9, 120.5, 120.5, 117.8, 112.4, 111.4, 111.2, 60.5, 55.5, 55.3, 51.6, 25.0, 20.7, 14.2. HRMS (ESI) Calcd for C₂₈H₂₉O₇: [M+H]⁺ 477.1913, found: 477.1920.

Ethyl 7-(2-chlorophenyl)-2-(2-(2-chlorophenyl)-2-oxoethyl)-2,5-dimethyl benzo[*d*][1,3]dioxole-4-carboxylate (4l)

143.2, 139.3, 134. 5, 133.1, 131.7, 131.3, 130.9, 130.8, 130.3, 129.8, 129.3, 129.2, 126.7, 126.7, 124.7, 122.6, 117.8, 113.5, 60.8, 50.9, 25.1, 20.6, 14.2. HRMS (ESI) Calcd for $C_{26}H_{23}Cl_2O_5$: $[M+H]^+$ 485.0923, found: 485.0931.

Ethyl 7-(2-fluorophenyl)-2-(2-(2-fluorophenyl)-2-oxoethyl)-2,5-dimethyl benzo[*d*][1,3]dioxole-4-carboxylate (4m)

^{Me} \int_{CO_2Et} ¹H NMR (400 MHz, CDCl₃) δ : 7.69-7.74 (m, 1H), 7.38-7.47 (m, 2H), 7.29-7.34 (m, 1H), 7.09-7.17 (m, 3H), 6.99-7.04 (m, 1H), 6.76 (s, 1H), 4.27-4.35 (m, 2H), 3.69 (d, *J* = 15.6 Hz, 1H), 3.66 (d, *J* = 15.6 Hz, 1H), 2.44 (s, 3H), 1.89 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 193.38, 193.35, 165.4, 162.9, 160.9, 160.3, 158.4, 147.7, 143.4, 131.03, 131.0, 130.54, 130.51, 129.7, 129.65, 126.3, 126.2, 124.42, 124.38, 124.30, 124.27, 124.05, 124.02, 123.2, 123.1, 119.1, 117.7, 116.6, 116.4, 116.1, 115.9, 113.2, 60.7, 51.3, 51.2, 25.1, 20.7, 14.2. HRMS (ESI) Calcd for C₂₆H₂₂F₂NaO₅: [M+Na]⁺ 475.1333, found: 475.1330.

Ethyl 2,5-dimethyl-2-(2-oxo-4-phenylbutyl)-7-phenethylbenzo[*d*][1,3] dioxole-4-carboxylate (4n)

¹H NMR (400 MHz, CDCl₃) δ: 7.25-7.31 (m, 4H), 7.17-7.22 (m, 6H), 6.53 (s, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.01 (d, *J* = 13.6 Hz, 1H), 2.95 (d, *J* = 13.6 Hz, 1H), 3.01 (d, J = 13.6 Hz, 1H), 3.01

1H), 2.83-2.94 (m, 8H), 2.45 (s, 3H), 1.75 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 204.9, 165.6, 146.9, 143.7, 141.2, 140.8, 131.4, 128.5, 128.5, 128.3, 128.3, 126.1, 126.0, 125.5, 124.4, 116.8, 112.1, 60.7, 51.3, 45.7, 35.6, 31.4, 29.4, 24.5, 20.8, 14.3. HRMS (ESI) Calcd for C₃₀H₃₃O₅: [M+H]⁺ 473.2328, found: 473.2331.

3. Procedure for the synthesis of (*Z/E*)-ethyl 2-(2-(2-(2,4-dinitrophenyl)hydrazono)-2-phenylethyl) -2,5-dimethyl-7-phenylbenzo[*d*][1,3]dioxole-4-carboxylate (4aa)

To a flask containing ethyl 2,5-dimethyl-2-(2-oxo-2-phenylethyl)-7-phenylbenzo[*d*][1,3]dioxole-4carboxylate (**4a**, 1.0 mmol) and (2,4-dinitrophenyl)hydrazine (1.0 mmol) in ethanol (5 mL) were added anhydrous CaCl₂ (2.0 mmol). The solution was stirred at reflux for 48 h, and then concentrated under vacuum. The residue was purified by column chromatography on silica gel eluenting with ethyl acetate/hexane (1:5) to give **4aa** as a mixture of E/Z isomers with a total yield of 52% (E:Z = 10:3). Single crystal of (*E*)-**4aa** was obtained by slow evaporation of its chloroform/petroleum ether solution at room temperature.

4. Typical procedure for the preparation of 5-ethoxy-4-(3-methyl-4-oxo-4-phenylbut-1-en-2-yl) furan-3(2H)-one (5b)

To a flask containing 2-methyl-1-phenylbuta-2,3-dien-1-one (1 mmol) and ethyl 4-chloro acetoacetate (2, 1.2 mmol) in CH₃CN (5 mL) were added anhydrous K₂CO₃ (1.0 mmol). The solution was stirred at room temperature for 1 h. The reaction then was quenched with aqueous NH₄Cl and extracted with ethyl acetate (5 mL \times 3). The combined organic phases were dried, filtered and concentrated under vacuum. The residue was purified by column chromatography over silica gel using ethyl acetate/hexane (v/v = 1/10) as eluent to give **5b** (52%). **5a**, **5c** and **5d** were obtained in a similar manner.

5-Ethoxy-4-(4-oxo-4-phenylbut-1-en-2-yl)furan-3(2H)-one (5a)

¹H NMR (CDCl₃, 400 MHz) δ: 7.93-7.90 (m, 2H), 7.47-7.44 (m, 1H), 7.38-7.34 (m, 2H), 5.87 (s, 1H), 4.89 (s, 1H), 4.41 (s, 2H), 4.28-4.23 (m, 2H), 3.97 (s, 2H),

1.09-1.05 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ :197.5, 194.0, 180.1, 136.9, 132.8, 130.1, 128.4, 128.0, 114.8, 93.8, 74.3, 66.6, 45.1, 14.3. HRMS(ESI): calcd for C₁₆H₁₇O₄: [M+H]⁺ 273.1127, found 273.1124.

5-Ethoxy-4-(3-methyl-4-oxo-4-phenylbut-1-en-2-yl)furan-3(2H)-one (5b) ¹H NMR (CDCl₃, 400 MHz) δ : 8.03-8.01 (m, 2H), 7.51-7.49 (m, 1H), 7.43-7.39 (m, 2H), 5.55 (s, 1H), 4.97 (q, J = 7.2 Hz, 1H), 4.95 (s, 1H), 4.57 (s, 2H), 4.45 (q, J = 7.2 Hz, 2H), 1.38-1.33 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ : 201.1, 194.0, 180.7, 136.8, 136.6, 132.4, 128.7, 128.3, 113.1, 94.0, 74.3, 66.7, 43.9, 16.8, 14.6. HRMS(ESI): calcd for C₁₇H₁₉O₄: [M+H]⁺ 287.1283, found 287.1279.

5-Ethoxy-4-(4-oxo-1-phenylpent-1-en-2-yl)furan-3(2H)-one (5c)

5-Ethoxy-4-(1-(4-methoxyphenyl)-4-oxopent-1-en-2-yl)furan-3(2H)-one (5d) ^{H₃CO</sub> ¹H NMR (CDCl₃, 400 MHz) δ : 7.37 (s, 1H), 7.09 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, ^{H₃C</sub> ² 2H), 4.54 (s, 2H), 4.50 (q, J = 7.2 Hz, 2H), 3.78 (s, 3H), 3.68 (s, 2H), 2.19 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ : 207.1, 180.2, 158.4, 130.1, 129.7, 128.6, 122.5, 113.6, 95.0, 74.1, 66.8, 55.2, 44.6, 29.5, 14.7. HRMS(ESI): calcd for C₁₈H₂₁O₅: [M + H]⁺ 317.1389, found 317.1386.}}

5. Procedure for the synthesis of ethyl 2,3-dihydroxy-5-methylbiphenyl-4-carboxylate (6a) from

To a flask containing ethyl 2,5-dimethyl-2-(2-oxo-2-phenylethyl)-7-phenylbenzo[d][1,3]dioxole-4carboxylate (**4a**, 1.0 mmol) in CH₂Cl₂ (5 mL) was added BBr₃ (5.0 mmol, 1M solution in methylene chloride) at 0 °C. The mixture was stirred at 0 °C for 2 h. Upon completion, the mixture was quenched with water and extracted with CH₂Cl₂ (5 mL × 3). The combined organic phases were dried, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel eluenting with ethyl acetate/hexane (v/v = 1/25) to give **6a** (80%).

¹H NMR (400 MHz, CDCl₃) δ : 11.93 (s, 1H), 7.66 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 8.0Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 5.92 (s, 1H), 6.76 (s, 1H), 4.47 (q, J = 7.2 Hz, 2H), 2.54 (s, 3H), 1.46 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 171.9, 150.4, 140.3, 136.9, 130.9, 130.93, 129.0, 128.6, 128.2, 127.8, 126.9, 123.4, 110.6, 61.8, 23.4, 14.2. HRMS (ESI) Calcd for C₁₆H₁₆NaO₄: [M+Na]⁺ 295.0946, found: 295.0951.

6. Procedure for the preparation of 4a through the reacion of 1a with 6a

To a flask containing 1-phenylbuta-2,3-dien-1-one (**1a**, 0.5 mmol) and ethyl 2,3-dihydroxy-5-methyl biphenyl-4-carboxylate (**6a**, 0.5 mmol) in toluene (5 mL) were added anhydrous K₂CO₃ (0.75 mmol) and tetrabutyl ammonium bromide (TBAB) (0.03 mmol). The solution was stirred at room temperature for 30 min. The reaction then was quenched with aqueous NH₄Cl and extracted with ethyl acetate (5 mL \times 3). The combined organic phases were dried, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel eluenting with ethyl acetate/hexane (v/v = 1/10) to give ethyl 2,5-dimethyl-2-(2-oxo-2-phenylethyl)-7-phenylbenzo[d][1,3]dioxole-4-carboxylate (**4a**, 86%).

III. Copies of ¹H and ¹³C NMR spectra of 3a-3s, 4a-4n, 5a-5d and 6a

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

20

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

37

As a mixture a E/Z isomers (E/Z = 10/7)

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

IV. X-ray crystallography

The crystallographic data (excluding structure factors) for **3f**, (*E*)-**4aa** (hydrazone of **4a**) and **5c** have been deposited at the Cambridge Crystallographic Data Centre. CCDC 892529, 913070 and 909448 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

1. X-ray crystal structure of ethyl 7-(4-bromophenyl)-5-methyl-3-oxo-2,3-dihydrooxepine- 4carboxylate (3f)

Fiure 1 The ORTEP drawing of 3f

2. X-ray crystal structure of (E)-ethyl 2-(2-(2-(2,4-dinitrophenyl)hydrazono)-2-phenylethyl)-2,5-dimethyl-7-phenylbenzo[d][1,3]dioxole-4-carboxylate (E-4aa)

(*E*)-4aa

Fiure 2 The ORTEP drawing of (E)-4aa

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

3. X-ray crystal structure of 5-Ethoxy-4-(4-oxo-1-phenylpent-1-en-2-yl)furan-3(2H)-one (5c)

Fiure 3 The ORTEP drawing of 5c

V. References

- (1) A. Sniady, M. S. Morreale, R. Dembinski, Org. Synth., 2007, 84, 199-208.
- (2) W. Wu, Z. Yao, Y. Li, J. Li, Y. Xia, Y. Wu, J. Org. Chem., 1995, 60, 3257-3259.
- (3) N. A. Petasis, K. A. Teets, J. Am. Chem. Soc., 1992, 114, 10328-10334.