From Flexible to Mesoporous Polybenzoxazine Resins Templated by Poly(ethylene oxide-*b*-ε-caprolactone) Copolymer through Reaction Induced Microphase Separation Mechanism

Wei-Cheng Chu, Jheng-Guang Li, and Shiao-Wei Kuo*

^aDepartment of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology,

National Sun Yat-Sen University, Kaohsiung, 804, Taiwan

*To whom corresponding should be addressed E-mail: kuosw@faculty.nsysu.edu.tw TEL: 886-7-5252000 ext.4079 FAX: 886-7-5254099

Scheme S1: The possible different mesoporous polybenzoxazine by carefully controlling curing temperature and process.

Figure S1: ¹H NMR of PEO₁₁₄-b-PCL₈₈ copolymer used in this study.

Figure S2: DSC thermogram of pure PA-OH by heating rate: 20 °C/min

Figure S3: TGA thermograms of polybenzoxazine/PEO-b-PCL blends of various compositions

Figure S4: (a) SAXS patterns and (b–e) TEM images of mesoporous polybenzoxazine templated by PEO_{114} -*b*-PCL₁₆₈ at weight fractions of (b) 40/60, (c) 50/50, (d) 60/40, and (e) 70/30

Figure S5: (a) SAXS patterns and (b–e) TEM images of mesoporous polybenzoxazine templated by PCL₂₂₀-*b*-PEO₂₂₇₂-*b*-PCL₂₂₀ at weight fractions of (b) 40/60, (c) 50/50, (d) 60/40, and (e) 70/30

Figure S6: N₂ adsorption/desorption isotherms of templated by (a) $PEO_{114}-b-PCL_{168}$ and (b) $PCL_{220}-b-PEO_{2272}-b-PCL_{22}$.