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Fig. S1. 'H NMR Spectrum for separated styrene oxide.

Styrene oxide "H NMR (MeOD, 500 MHz) § (ppm) : 7.18-7.23 (m, 5H), 3.68 (dd, 1H, H1), 2.90 (dd,

1H, H2trans), 2.60 (dd, 1H, H2cis).
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Fig. S2. GC-MS result for the reaction mixture of styrene, styrene oxide and benzaldehyde.
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Fig. S3. EDX spectra of 2.5Co0-CeO, NW.
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Fig. S4. SEM images of as-synthesized CeO, shapes using metal to ammonium carbonate ratio
(w/w) of 1:3 (a) and 1:9 (b), using metal to PEG-600 ratio (w/v) 1:0 (c), 1:2.5 (d), 1:5 (e), 1:7.5 (f),
using PEG-1000 (g), PEG-1500 (h) and sodium carbonate (i) at 150 °C in hydrothermal condition
keeping all other conditions constant (metal : ammonium carbonate :: 1:6, metal : PEG ::1:10).

The described CeO, NW was selectively synthesized in hydrothermal condition at 150 °C using PEG-
600 with a (NH4)2Ce(NO3)s to PEG ratio of 1:10 (w/v) and (NH4).Ce(NO3)s to ammonium carbonate
ratio of 1.6 (w/w). We have also synthesized CeO, of different morphology using the developed
procedure by varying the amount of PEG, molecular weight of PEG, amount of ammonium carbonate
and type of carbonate source (sodium carbonate instead of ammonium carbonate). Rods of different
width leading to different kind of assembly were observed on variation of ammonium carbonate
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amount. Spindle like assembled rods of 0.8-2 um length with ~50 nm width was produced using 3 g of
ammonium carbonate instead of 6 g, keeping all other parameters unchanged (Fig. S4a). Whereas,
assembled rods with ~125 nm width and 0.8-12 um long was resulted on utilization of 9 g of ammonium

carbonate (Fig. S4b). The amount of PEG has also a definite effect on the morphology.

Spherical CeO, particles with smooth surface were obtained in the absence of PEG (Fig. S4c). The
formation of one dimensional structure (rod/wire) took place with the addition of PEG and as the
amount of PEG is increased in the reaction system the formation of spherical particles decreased
gradually (Fig. S4d-f). Again, with the increase of molecular weight of PEG the tendency of formation
of 1D structure decreased. When the PEG-1000 was used instead of PEG-600, it resulted mixture of
wires and spherical particles, whereas PEG-1500 did not produce any 1D structure and only mixture of
spherical and teased cotton like particles (Fig. S4g-h) were obtained. Sodium carbonate gave only very
small agglomerated particle. It was observed that the morphology of all the as-synthesized particles

retained after calcinations at 500 °C.

As PEG is the main controlling factor for the synthesis of wires, so in the presence of reduced amount of
PEG it resulted a mixture of wire and spherical particle (Fig. 7 d-f); and with the increased amount of
PEG, the formation of spherical particles reduces. In the presence of reduced amount of PEG, initially
the formed nanoparticles binds on the surface of PEG chain and after saturation of PEG surface, the
remaining nanoparticles agglomerates to give spherical particle. As the molecular weight of PEG
increased, the steric hindrance increased in the PEG chains and resulted in the mixture of wire and
spheres in PEG-1000. In the case of PEG-1500 the strong steric hindrance caused the fusion of
nanoparticles which reduced the control over particle and resulted the mixture of spherical and teased
cotton like particles. Similar phenomena has been reported in literature during the formation of ZnO

nanowires. |
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Fig. S5. Linear fitting of kinetic data for the Langmuir-Hinshelwood model(a) and Mars—van Krevelen
model (b). Weight of catalyst =35 mg; DMF=15 mL; reaction temperature = 120°C.

In present work styrene oxidized by molecular oxygen in presence of CeO,-NW based catalyst and
reaction scheme is as follows:

CeOz/Co CeO»

For kinetic study, we have studied only the concentration of the styrene. We ignored the O,
concentration, as we used a continues and constant flow of the O, hence the concentration of O, was
much higher than other.

To understand the reaction mechanism, it is essential to identify the exact pathway which it follows.
Among the several proposed model, Mars—van Krevelen (MvK) and Langmuir—Hinshelwood (LH)
mechanisms are the mostly used for heterogeneously catalyzed oxidation reactions using molecular
oxygen.

Evaluations of best fit for the kinetic models were made using rate expressions of the above mentioned
model.

According Mars-van Krevelen model, the oxidation takes place through the lattice oxygen of catalyst
surface and the reduced catalyst surface regenerate by molecular oxygen.
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Equation of reaction through this model can be described as:
Organic molecule + Oxidized catalyst - Reduced catalyst + Products
Reduced catalyst + O, - Oxidized catalyst

The rate equation based on the above mechanism is expressed as:

KGKRCG CR
'r' =
aKzCr + KoCy

Rearranged as:

1 it 1

= +
—r  K,C, KgCg

Whereas Kg and Ko are the rate constant of the reactant and O, with catalyst .

In Langmuir—Hinshelwood model assumes that O, and organic molecules adsorb onto the same kind
of active sites in non dissociative way. The rate expression based on this model is expressed as follows:
kK, K;C,Cs
T = 5
(1+K;Cr+ K, Cp)?

Rearranged as

PR — 1 K,
&

VC/(-Tr)=—=+—=¢C¢
1.-"51 JE

First we have plotted the time vs conversion of the reactant (mol %) up to 1 h and from tangent of the
plot we got the Initial rate.

—
After that we plotted Cj vs ﬂqﬂf—fﬂ (according to MvK model) and 1/Cg vs 1/-r (according to L-H model)

and best linear fit was obtained according to L-H model. So we concluded that the reaction mechanism
follows L-H model.
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Table S1. Comparison of catalytic activity of the synthesized CeO, wire based catalysts and other

literature reported results.

Sr. No. Catalyst Conversion Selectivity  Yield” Ref **
1 Ce0,-NW 80.5 70.1 564 . -resent
investigation
2 2.5%C0-Ce02-NW 97,5 74.2 7234 . Present
investigation
3 596C0-CeO,-NW 89.5 75.2 673 . resent
investigation
4 Co-ZSM-5 88.4 90.1 80.0 2
5 VO(acac:8-Q)-SBA-15 91.2 50.2 45.8 3
6 STA-12(Co) 98.5 21.0 20.68 4
7 CoAPO-5 molecular sieves 85 69 58.68 5
8 Co**SBA-15 93.9 65.5 61.5 6
9 Co-SBA-15, 94.1 65.5 61.6 7
10 Cobalt substituted SSZ-51 50 75 375 8
11 nanosized Co30, 81.1 84.0 68.2 9
12 [Co(Bzo2[12]aneN,)](CIO,)2 41.9 47.6 20.0 10
13 Auss-SiOs 21.4 23.7 5.07 11
14 Co/Ts-1 94.5 74.3 70.1 12

* Theoretical yield: calculated from conversion and selectivity. ** Literature reported results.
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