Supplementary Information

Tandem oxidative radical fragmentation-rearrangement of 2-amino-1,3-benzylidene acetals: A short entry to densely functionalised fully differentiated oxazolidinones

James McNulty, Janice Calzavara
Department of Chemistry \& Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ont., L8S 4M1, Canada

1. General

All fine chemicals were obtained from Sigma-Aldrich and used as obtained. Solvents were either used as-obtained (DMF, DMSO, Aldrich Sure-seal®) or dried using standard protocols. Dichloromethane and triethylamine were distilled over calcium hydride. THF and toluene were distilled over sodium metal in the presence of benzophenone indicator. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a 600 MHz Bruker NMR spectrometer and ${ }^{31} \mathrm{P}$ NMR spectra were obtained on a 200 MHz Bruker NMR spectrometer, unless otherwise stated. Chemical shifts are reported in units of $\delta(\mathrm{ppm})$ and coupling constants (J) are expressed in Hz . Mass spectra were run on a Micromass Quattro Ultima spectrometer fitted with a direct injection probe (DIP) with ionization energy set at 70 eV and HRMS (EI) were performed with a Micromass Q-TOF Ultima spectrometer. IR spectra were obtained on a Nicolet 510 FT-IR spectrometer on NaCl plates with absorptions given in cm^{-1}. Thin layer chromatography (TLC) was run using Macherey-Nagel aluminum-backed plates. Melting points were obtained on an Electronic Research Associates Inc. melting point apparatus corrected against an external calibrant. Atom numbering in the compound structures shown below is provided for unambiguous assignment with spectral details and may not correspond to systematic atom numbering. Standard abbreviations for reagents and solvents are used in the experimental descriptions ($\mathrm{Boc}=$ tert-butyloxycarbonyl, $\mathrm{BPO}=$ benzoyl peroxide, $\mathrm{NBS}=\mathrm{N}$-bromosuccinimide, $\mathrm{PTSA}=$ paratoluene sulfonic acid, $\mathrm{DCM}=$ dichloromethane, $\mathrm{DMF}=$ dimethylformamide, $\mathrm{THF}=$ tetrahydrofuran .

5-Hydroxymethyl-5-(N-tert-butoxycarbonyl)amino-2-phenyl-1,3-dioxana-benzylidene 7a. ${ }^{1,2}$

Tris(hydroxymethyl)aminomethane (THAM, $3.210 \mathrm{~g}, 26.50 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{Boc}_{2} \mathrm{O}(6.6523 \mathrm{~g}$, 30.48 mmol , 1.15 eq) were dissolved in dry DMF (24 mL) and stirred 24 h at rt . Benzaldehyde dimethyl acetal ($5.1 \mathrm{~g}, 5.0 \mathrm{~mL}, 33 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added with catalytic para-toluenesulfonic acid monohydrate (PTSA, $0.192 \mathrm{~g}, 1.01 \mathrm{mmol}, 0.06 \mathrm{eq}$) and stirred an additional 24 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and extracted with sat'd $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ mixed with additional water $(20 \mathrm{~mL})$. The aqueous layer was further diluted with water $(30 \mathrm{~mL})$ and washed with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL} \times 3)$, followed by a final dilution with water $(20 \mathrm{~mL})$ and final wash with $\mathrm{Et}_{2} \mathrm{O}$ (100 mL). The organic layers were combined, dried over MgSO_{4} and the solvent removed under reduced pressure. The product was recrystallised from $\mathrm{Et}_{2} \mathrm{O} /$ hexane to give $7 \mathbf{a}$ as a mixture of two separable (on silica-gel) isomers in a $60: 40$ ratio ($6.666 \mathrm{~g}, 21.55 \mathrm{mmol}, 81.3 \%$). Isomer \#1 (less polar): IR (4000-625v cm $\left.{ }^{-1}, \mathrm{NaCl}\right): 3424,3322,3036,2977,2927,2867,1686,1541,1500$, 1454, 1391, 1368, 1316, 1286, 1250, 1172, 1104, 1084, 1057, 989, 747, 699. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.46(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-10 / 11 / 12), 3.71(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 3.84(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{H}-4 / 6)$, $4.21(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{H}-4 / 6), 5.48(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 5.8$ (broad, $1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-7), 7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 17/18/19), $7.51(2 \mathrm{H}$, dd $J=1.5 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, \mathrm{H}-16 / 20) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 28.4$ (C10/11/12), 53.7 (C-5), 65.0 (C-13), 72.0 (C-4/6), 80.8 (C-9), 102.1 (C-2), 126.1 (C-17/19), 128.5 (C-16/20), 129.4 (C-18), 137.6 (C-15), 156.9 (C-8). Isomer \#2 (more polar): IR (4000-625v cm ${ }^{-1}$, $\mathrm{NaCl}): 3258,3070,2986,2950,2929,2871,2856,1682,1557,1499,1456,1393,1368,1319$, $1284,1249,1214,1175,1115,1050,1025,984,964,941,907,871,759,697 .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.45(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-10 / 11 / 12), 4.08(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 4.10(2 \mathrm{H}, \mathrm{s}, J=11.1 \mathrm{~Hz}, \mathrm{H}-4 / 6)$, $4.20(2 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.74(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-7), 5.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $17 / 18 / 19), 7.46(2 \mathrm{H}, \mathrm{dd}, J=2.4 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, \mathrm{H}-16 / 20) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 28.4(\mathrm{C}-$ 10/11/12), 52.0 (C-5), 63.3 (C-13), 69.4 (C-4/6), 72.0 (C-9), 101.7 (C-2), 126.3 (C-17/19), 128.5
(C-18/20), 129.2 (C-18), 137.6 (C-15), 155.4 (C-8). MS (ESI ${ }^{+}$, TOF): Calc'd. for [$\left.\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5}{ }^{+}\right]$: 310.1654 ; found 310.1658 .

4-Hydroxymethyl-4-benzoyloxymethyl-2-oxazolidinone 8a.

To a flame-dried flask fitted with a condenser under argon was added sequentially compound $\mathbf{7 a}$ ($0.0502 \mathrm{~g}, 0.162 \mathrm{mmol}, 1.0 \mathrm{eq}$), NBS ($0.0309 \mathrm{~g}, 0.174 \mathrm{mmol}, 1.05 \mathrm{eq}), \mathrm{BPO}\left(75 \% \mathrm{BPO}\right.$ in $\mathrm{H}_{2} \mathrm{O}$, $0.0020 \mathrm{~g}, 0.0062 \mathrm{mmol}, 0.04 \mathrm{eq})$, and chlorobenzene (2.0 mL) and the mixture heated at $70{ }^{\circ} \mathrm{C}$ for 110 mins. A second portion of NBS $(0.008 \mathrm{~g}, 0.05 \mathrm{mmol}, 0.3 \mathrm{eq})$ and $\mathrm{BPO}(75 \% \mathrm{BPO}$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.001 \mathrm{~g}, 0.003 \mathrm{mmol}, 0.02 \mathrm{eq}\right)$ were added and the solution was heated at $70{ }^{\circ} \mathrm{C}$ for an additional 25 mins. The mixture was then cooled to room temperature and sat'd aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added, with subsequent removal of the organic layer. The aqueous layer was washed with $\operatorname{DCM}(5 \mathrm{~mL} \times 3)$, the organic layers combined, dried over MgSO_{4}, filtered, and the solvent removed under reduced pressure. Purification was obtained through silica column chromatography (75:25 hexanes:ethyl acetate) yielding 7a as colourless crystals ($0.0313 \mathrm{~g}, 0.124$ mmol, 77%). IR ($\left.4000-625 \mathrm{v} \mathrm{cm}^{-1}, \mathrm{NaCl}\right): 3248(\mathrm{OH}), 2923(\mathrm{C}-\mathrm{H}), 2853(\mathrm{C}-\mathrm{H}), 1712(\mathrm{C}=\mathrm{O})$, 1466, 1446, 1430, 1407, 1314, 1270 (C-O), 1178, 1114 (C-O), 1054 (C-O), 990, 961, 935, 926, 767, 708. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 2.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-15), 3.69(1 \mathrm{H}, \mathrm{dd}, J=5.2,11.4 \mathrm{~Hz}, \mathrm{H}-$ 14), 3.73 ($1 \mathrm{H}, \mathrm{dd}, J=5.2,11.4 \mathrm{~Hz}, \mathrm{H}-14) 4.33(2 \mathrm{H}, \mathrm{dd}, J=9.0 \mathrm{~Hz}, 16.8 \mathrm{~Hz}, \mathrm{H}-6), 4.42(1 \mathrm{H}, \mathrm{d}, J$ $=11.6 \mathrm{~Hz}, \mathrm{H}-5), 4.54(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{H}-5), 7.48(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-10 / 12), 7.61(1 \mathrm{H}, \mathrm{t}, J$ $=7.7 \mathrm{~Hz}, \mathrm{H}-11), 8.02(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-9 / 13) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): 60.5(\mathrm{C}-4), 63.5$
(C-14), 64.6 (C-5), 68.9 (C-6), 128.2 (C-10/12), 129.4 (C-9/13), 133.4 (C-11), 138.2 (C-8), 157.9 (C-2), 166.2 (C-8). MS (EI, TOF): Calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{5}^{+}\right]$252.0872; found 252.0936. M.p.: $129.8-131.1^{\circ} \mathrm{C}$.
cis/trans-5-(Methoxymethyl)methyloxy-5-(N-tert-butoxycarbonyl)amino-2-phenyl-1,3dioxane 7b.

To a flame-dried 2-neck flask was weighed the alcohol $7 \mathbf{a}(0.20 \mathrm{~g}, 0.65 \mathrm{mmol}, 1 \mathrm{eq})$ to which was added dry $\mathrm{DCM}(2.0 \mathrm{~mL})$, $\mathrm{MOM}-\mathrm{Cl}(0.15 \mathrm{~mL}, 0.16 \mathrm{~g}, 2.0 \mathrm{mmol}, 3.1 \mathrm{eq})$ and diisopropylethylamine $(0.68 \mathrm{~mL}, 0.50 \mathrm{~g}, 3.9 \mathrm{mmol}, 6.0 \mathrm{eq})$. The mixture was stirred for 70 min at which time a second portion of DCM (1.5 mL) was added. The mixture was stirred for an additional 130 min , and the solvent subsequent removed under reduced pressure. Purification was performed through silica gel column chromatography ($15: 85 \mathrm{v} / \mathrm{v}$, ethyl acetate:hexanes) to give 7b as a colourless solid (1:1.4 isomer ratio, $0.1643 \mathrm{~g}, 0.4649 \mathrm{mmol}, 72 \%$). IR (4000-625v $\mathrm{cm}-1, \mathrm{NaCl}): 3427,3353,2977,2933,2886,1718,1500,1456,1392,1367,1313,1287,1248$, $1218,1167,1109,1077,1046,977,918,870,825,747,699 .{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.48$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-10 / 11 / 12$), 3.36 (major, $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 3.40 (minor, $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 3.81 (major, $2 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 13), 3.96 (major, $2 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{H}-4 / 6$), 4.01 (minor, $2 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 4.16 (minor, $2 \mathrm{H}, \mathrm{d}, J=$ 11.3 Hz, H-4/6), 4.34 (major, 2H, d, $J=11.2 \mathrm{~Hz}, \mathrm{H}-4 / 6$), 4.42 (minor, 2 H , s-broad, H-4/6), 4.61 (major, 2H, s, H-14), 4.70 (minor, 2H, s, H-14), 4.83 (minor, 1H, s-broad, NH-7), 5.13 (major, 1H, s, NH-7), 5.48 (major, 1H, s, H-2), 5.54 (minor, 1H, s, H-2), 7.38 (3H, m, H-18/19/20), 7.46 (minor, 2 H , dd, $J=1.8,7.9 \mathrm{~Hz}, \mathrm{H}-17 / 21$), $7.51(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-17 / 21) .{ }^{13} \mathrm{C}$ NMR (major,
$\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 28.5$ (C-10/11/12), 52.3 (C-15), 55.5 (C-5), 69.1 (C-13), 70.9 (C-4/6), 96.9 (C-14), 101.8 (C-2), 126.2 (C-17/21), 128.5 (C-18/20), 129.3 (C-19), 137.9 (C-16), 155.2 (C-8). ${ }^{13} \mathrm{C}$ NMR (minor, $\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$): $\delta 28.5$ (C-10/11/12), 51.1 (C-15), 55.6 (C-5), 66.9 (C-4/6), 68.0 (C-13), 97.0 (C-14), 97.0 (C-2), 126.3 (C-17/21), 128.5 (C-18/20), 129.2 (C-19), 137.9 (C16), 154.7 (C-8). MS (ESI+, TOF): Calc'd for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5}+\mathrm{H}^{+}\right]: 354.1917$; found: 354.1906.

4-(Methoxymethyl)methyloxy-4-benzoyloxymethyl-2-oxazolidinone 8b. ${ }^{\mathbf{3}}$

Compound 7b ($0.045 \mathrm{~g}, 0.13 \mathrm{mmol}, 1.0 \mathrm{eq})$, NBS ($0.0238 \mathrm{~g}, 0.133 \mathrm{mmol}, 1.05 \mathrm{eq})$, and BPO (75% in $\mathrm{H}_{2} \mathrm{O}, 0.005 \mathrm{~g}, 0.03 \mathrm{mmol}, 0.2 \mathrm{eq}$) were dissolved in chlorobenzene (2.5 mL) and the mixture heated at $70^{\circ} \mathrm{C}$ for 75 min . The mixture was then cooled to room temperature and the solvent removed under reduced pressure. Purification was performed through column chromatography (85:15 v/v, hexanes:ethyl acetate) to give 8b as a colorless solid ($0.018 \mathrm{~g}, 47 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-17), 3.70(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 4.26(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-$ 6), $4.35(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-5), 4.38(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-6), 4.54(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-5)$, $4.66(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-16), 7.46(2 \mathrm{H}, \mathrm{t}, J=7.5,7.6 \mathrm{~Hz}, \mathrm{H}-11 / 13), 7.60(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-12), 8.02$ $(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10 / 14) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 55.9(\mathrm{C}-17), 60.0(\mathrm{C}-4), 65.6(\mathrm{C}-$ 15), 69.8 (C-5), 69.9 (C-6), 97.1 (C-16), 128.8 (C-11/13), 129.2 (C-12), 129.9 (C-10/14), 133.8 (C-9), 158.4 (C-2), 166.2 (C-8). MS (EI, TOF): Cal'd for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6}+\mathrm{H}^{+}\right]$: 296.1134; found 296.1140.

cis/trans-2-Phenyl-5-(N-tert-butyloxycarbonyl)amino-1,3-dioxane 16.

Into a 10 mL flask was weighed serinol $(0.1318 \mathrm{~g}, 1.447 \mathrm{mmol}, 1.0 \mathrm{eq})$ and dry DMF (1.1 mL) under nitrogen. $\mathrm{Boc}_{2} \mathrm{O}(0.3452 \mathrm{~g}, 1.582 \mathrm{mmol}, 1.09 \mathrm{eq})$ was added and the mixture was stirred at rt for 4.5 h . Benzaldehyde dimethyl acetal ($0.28 \mathrm{~mL}, 0.28 \mathrm{~g}, 1.9 \mathrm{mmol}, 1.3 \mathrm{eq}$) and PTSA monohydrate $(0.0176 \mathrm{~g}, 0.0925 \mathrm{mmol}, 0.064 \mathrm{eq})$ were sequentially added, and the mixture was subsequently stirred at room temperature for an additional 19h. A spatula of solid NaHCO_{3} was added and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$. The ether phase was washed with sat'd $\mathrm{LiCl}(5 \mathrm{~mL} \times 3)$ and the combined organic layer dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed under reduced pressure. Purification was performed via recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ and hexanes to afford compound $\mathbf{1 6}$ as colourless crystals $(0.2071 \mathrm{~g}, 0.7414 \mathrm{mmol}, 51 \%)$ in a $1: 1$ ratio as determined by ${ }^{1} \mathrm{H}$ NMR. IR (4000-625v cm ${ }^{-1}$, NaCl): 3450, 3345, 2977, 2931, 2861, 1712, 1501, 1455, 1392, 1367, 1305, 1237, 1171, 1108, 1014, 978, 748, 699. ${ }^{1}$ H NMR (600 $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta 1.39(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-16 / 17 / 18), 1.41(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-16 / 17 / 18), 3.43(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, H-5), $3.56(2 \mathrm{H}, \mathrm{t}, J=10.8 \mathrm{~Hz}, \mathrm{H}-4 / 6), 3.64-3.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 3.99(2 \mathrm{H}, \mathrm{dd}, J=1.1,11.8 \mathrm{~Hz}, \mathrm{H}-$ $4 / 6), 4.08(2 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.10(2 \mathrm{H}, \mathrm{dd}, J=4.8,10.8 \mathrm{~Hz}, \mathrm{H}-4 / 6), 5.39(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$, 5.55 (1H, s, H-2), 6.97 ($1 \mathrm{H}, \mathrm{dd}, J=6.6,15.0 \mathrm{~Hz}, \mathrm{NH}-13$), 7.33-7.38 (6H, m, H-9/10/11), 7.397.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 / 12$), 7.47-7.50 (2H, s, H-8/12). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO-d d_{6}): $\delta 28.2$ (C17/18/19), 28.2 (C-17/18/19), 43.1 (C-5), 44.9 (C-5), 69.3 (C-4/6), 78.0 (C-16), 78.2 (C-16), 100.3 (C-2), 100.6 (C-2), 126.2 (C-9/11), 126.4 (C-9/11), 127.9 (C-8/12), 128.0 (C-8./12), 128.7 (C-10), 128.7 (C-10), 138.0 (C-7), 138.5 (C-7), 155.0 (C-14), 155.3 (C-14). MS (ESI+): Calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}\right]: 280.1549$, found: 280.1546 .

4-Benzoyloxymethyl-2-oxazolidinone $17 .{ }^{4}$

Into a tapered microwave vial was added sequentially the protected serinol $\mathbf{1 6}(0.0415 \mathrm{~g}, 0.149$ mmol, 1.0 eq$)$, NBS ($0.0305 \mathrm{~g}, 0.171,1.15 \mathrm{eq})$, and $\mathrm{BPO}\left(75 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.0057 \mathrm{~g}, 0.12 \mathrm{eq}\right)$. The atmosphere was replaced with nitrogen followed by addition of chlorobenzene (0.5 mL). The mixture was heated at $65^{\circ} \mathrm{C}$ for 4.5 h , at which time further portions of NBS $(0.0157 \mathrm{~g}, 0.0882$ mmol, 0.59 eq$)$ and $\mathrm{BPO}\left(75 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.0032 \mathrm{~g}, 0.0099 \mathrm{mmol}, 0.066 \mathrm{eq}\right)$ were added. The mixture was heated for a further 60 min , and then cooled to rt . The mixture was diluted with DCM (2 mL), and washed with sat'd $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The aqueous layer was extracted with DCM ($2 \mathrm{~mL} \times 3$), the organic layers combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed under reduced pressure. Purification was conducted via silica gel column chromatography (100% hexanes, slowly increasing to $70: 30 \mathrm{v} / \mathrm{v}$, hexanes:ethyl acetate) to afford compound 17 as an off-white solid ($0.0238 \mathrm{~g}, 0.1076 \mathrm{mmol}, 72 \%$). IR ($4000-625 \mathrm{v} \mathrm{cm}^{-1}, \mathrm{NaCl}$): 3285, 3070, 2952, 1758, 1718, 1601, 1452, 1409, 1316, 1276, 1180, 1071, 1028, 934, 713. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.23-4.27(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 4.31(1 \mathrm{H}, \mathrm{dd}, J=5.5,11.5 \mathrm{~Hz}, \mathrm{H}-5), 4.31$ ($1 \mathrm{H}, \mathrm{dd}, J=5.0,8.7 \mathrm{~Hz}, \mathrm{H}-6), 4.47(1 \mathrm{H}, \mathrm{dd}, J=4.1,11.5 \mathrm{~Hz}, \mathrm{H}-5), 4.59(1 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, \mathrm{H}-6)$, $5.4(1 \mathrm{H}, \operatorname{broad} \mathrm{s}, \mathrm{NH}-3), 7.47(2 \mathrm{H}, \mathrm{dt}, J=1.7,7.5 \mathrm{~Hz}, \mathrm{H}-11 / 13), 7.60(1 \mathrm{H}, \mathrm{tt}, J=1.3,7.4 \mathrm{~Hz}, \mathrm{H}-$ 12), $8.03(2 \mathrm{H}, \mathrm{dd}, J=1.3,8.3 \mathrm{~Hz}, \mathrm{H}-10 / 14) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 51.4$ (C-4), 65.6 (C5), 67.1 (C-6), 128.8 (C-11/13), 129.1 (C-9), 129.9 (C-10/14), 133.8 (C-12), 158.9 (C-2), 166.3 (C-8).
cis/trans-2-Phenyl-5-(N-tert-butyloxycarbonyl)aminomethyl-1,3-dioxolane 19.

3-Amino-1,2-propanediol ($0.1033 \mathrm{~g}, 1.134 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in DMF (1.0 mL) in a 10 mL flame-dried flask. $\mathrm{Boc}_{2} \mathrm{O}(0.265 \mathrm{~g}, 1.22 \mathrm{mmol}, 1.08 \mathrm{eq})$ was added and the solution stirred for 7 h at room temperature. Benzaldehyde dimethyl acetal ($0.20 \mathrm{~g}, 1.3 \mathrm{mmol}, 0.22 \mathrm{~mL}, 1.2 \mathrm{eq}$) and PTSA monohydrate $(0.0125 \mathrm{~g}, 0.0657 \mathrm{mmol}, 0.060 \mathrm{eq})$ were then sequentially added and stirred at room temperature for an additional 16 h . The mixture was washed with $1: 1 \mathrm{sat}$ 'd $\mathrm{NaHCO}_{3}: \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and separated, the aqueous layer was partitioned further with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3$ $\mathrm{mL})$. The combined organic phase was dried over MgSO_{4}, filtered, and the solvent removed under reduced pressure. The residue was purified over silica gel column chromatography (100% hexanes, with gradient elution to $70: 30 \mathrm{v} / \mathrm{v}$, hexanes:ethyl acetate) yielding compound $\mathbf{1 9}$ as an inseparable, 1:1.3 mixture of cis/trans-isomers (colourless solid, $0.1441 \mathrm{~g}, 0.5159 \mathrm{mmol}, 46 \%$). IR (4000-625v cm $\left.{ }^{-1}, \mathrm{NaCl}\right): 3316,3001,2947,1873,1667,1520,1479,1406,1088,1071,981$, 914, 758. ${ }^{1} \mathrm{H}$ NMR (major isomer, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.48(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-15 / 16 / 17), 3.25-3.35(2 \mathrm{H}$, m, H-6), $3.88(1 \mathrm{H}, \mathrm{dd}, J=5.6,8.2 \mathrm{~Hz}, \mathrm{H}-4), 4.09(1 \mathrm{H}, \mathrm{dd}, J=7.4,8.1 \mathrm{~Hz}, \mathrm{H}-4), 4.29-4.37(1 \mathrm{H}$, m, H-5), $4.8(1 \mathrm{H}$, broad, NH-12), $5.79(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.39(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 / 9 / 10), 7.49(2 \mathrm{H}, \mathrm{dd}, J=$ 2.0, $7.5 \mathrm{~Hz}, \mathrm{H}-7 / 11$). ${ }^{1} \mathrm{H}$ NMR (minor isomer, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.49(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-15 / 16 / 17$), 3.41-3.54 (2H, m, H-6), 3.72 ($1 \mathrm{H}, \mathrm{dd}, J=7.0,8.2 \mathrm{~Hz}, \mathrm{H}-4$), 4.23 ($1 \mathrm{H}, \mathrm{dd}, J=6.5,8.3 \mathrm{~Hz}, \mathrm{H}-4$), 4.29-4.37 (1H, m, H-5), $4.9(1 \mathrm{H}$, broad, NH-12), $5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.39(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 / 9 / 10), 7.46$ $(2 \mathrm{H}, \mathrm{dd}, J=1.8,7.6 \mathrm{~Hz}, \mathrm{H}-7 / 11) .{ }^{13} \mathrm{C}$ NMR (mixture of isomers, $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 28.0(\mathrm{C}-$ 15/16/17), 28.4 (C-15/16/17), 42.4 (C-6), 43.0 (C-6), 67.8 (C-4), 67.9 (C-4), 75.6 (C-5), 75.9 (C-
5), 79.6 (C-14), 79.6 (C-14), 103.5 (C-2), 104.3 (C-2), 126.4 (C-7/11), 126.6 (C-7/11), 128.4 (C8/10), 128.5 (C-8/10), 129.3 (C-9), 129.5 (C-9), 137.2 (C-6), 137.9 (C-6), 156.2 (C-13). MS (ESI+): Calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}\right]: 302.1368$; found 302.1362.

1-Bromo--2-benzoyloxy-3-(N-tert-butyloxycarbonyl)aminopropane 20.

Compound 19 ($0.0491 \mathrm{~g}, 0.176 \mathrm{mmol}, 1.0 \mathrm{eq})$, NBS ($0.0528 \mathrm{~g}, 0.297 \mathrm{mmol}, 1.76 \mathrm{eq})$, and BPO (75% in $\mathrm{H}_{2} \mathrm{O}, 0.0094 \mathrm{~g}, 0.029 \mathrm{mmol}, 0.17 \mathrm{eq}$) were dissolved in chlorobenzene (2.3 mL) and the solution heated at $70^{\circ} \mathrm{C}$ for 5 h . The mixture was the cooled to room temperature and the solvent removed under reduced pressure. The crude product was purified over silica gel column chromatography (100% hexanes, gradient elution to $90: 10 \mathrm{v} / \mathrm{v}$, hexanes:ethyl acetate) to afford compound 20 as a colourless solid $(0.0300 \mathrm{~g}, 0.0837 \mathrm{mmol}, 48 \%) . \mathrm{IR}\left(4000-625 \mathrm{v} \mathrm{cm}^{-1}, \mathrm{NaCl}\right)$: 3372, 2977, 1721, 1518, 1367, 1271, 1111, 1910, 711. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35(9 \mathrm{H}$, s, H-1/2/3), 3.46-3.54 (2H, m, H-7/9), $3.56(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-9), 3.59(1 \mathrm{H}, \mathrm{dd}, J=5.0,11.1$ $\mathrm{Hz}, \mathrm{H}-7), 4.72(1 \mathrm{H}$, broad, NH-6), $5.23(1 \mathrm{H}, \mathrm{q}, J=5.4 \mathrm{~Hz}, \mathrm{H}-8), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}-$ $13 / 15), 7.52(1 \mathrm{H}, \mathrm{t}, J=7.5,7.6 \mathrm{~Hz}, \mathrm{H}-14), 8.00(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-12 / 16) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.4$ (C-1/2/3), 31.5 (C-9), 42.6 (C-7), 72.4 (C-8), 80.1 (C-4), 128.6 (C-13/15), 129.7 (C-11), 130.0 (C-12/16), 133.6 (C-14), 156.0 (C-5), 165.9 (C-10). MS ($\left.\mathrm{ESI}^{+}, \mathrm{TOF}\right):$ Calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrNO}_{4} \mathrm{Na}^{+}\right]: 380.0468,382.0453$; found 380.0480, 382.0511.
cis/trans-5-Formyl-5-(N-tert-butyloxycarbonyl)amino-2-phenyl-1,3-dioxane 23. ${ }^{3}$

Oxalyl chloride ($0.30 \mathrm{~mL}, 0.44 \mathrm{~g}, 3.5 \mathrm{mmol}, 2.1 \mathrm{eq}$) was dissolved in DCM (9 mL) and cooled to $78{ }^{\circ} \mathrm{C}$. DMSO ($040 \mathrm{~mL}, 0.44 \mathrm{~g}, 5.6 \mathrm{mmol}, 3.4 \mathrm{eq}$) was added slowly and the reaction was stirred for 40 mins. A solution of alcohol $7 \mathbf{a}(0.5045 \mathrm{~g}, 1.631 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{DCM}(2.5 \mathrm{~mL})$ was added dropwise to the mixture over 3 mins and stirring continued at $-78^{\circ} \mathrm{C}$ for 55 min . TEA (1.5 $\mathrm{mL}, 1.1 \mathrm{~g}, 11 \mathrm{mmol}, 6.6 \mathrm{eq}$) was added to the reaction dropwise and the solution was slowly allowed to warm to room temperature with stirring over 2 h . The reaction was carefully quenched with $1 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ and the organic (DCM) phase partitioned with sat'd aqueous NaHCO_{3}, followed by brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Purification was performed over silica gel silica column chromatography (100% hexanes with slow gradient elution to $80: 20 \mathrm{v} / \mathrm{v}$, hexanes:ethyl acetate) to give $\mathbf{2 3}$ as the inseparable cis/trans-isomers (colorless solid, $0.3963 \mathrm{~g}, 1.289 \mathrm{mmol}, 79 \%$). IR ($4000-625 \mathrm{v} \mathrm{cm}^{-1}$, $\mathrm{NaCl}): 3341(\mathrm{~N}-\mathrm{H}), 2978,2932,2871,1728$ (C=O), 1700 (C=O), 1499, 1455, 1393, 1369, 1278, $1250,1165,1137,1103,1080,1052,989,747,699 .{ }^{1} \mathrm{H}$ NMR (Major isomer, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.48(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-10 / 11 / 12), 4.14(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.28(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-4 / 6), 5.5$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$), $5.7(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-7), 7.34-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 / 17 / 18), 7.50(2 \mathrm{H}, \mathrm{dd}, J=1.5,7.9 \mathrm{~Hz}, \mathrm{H}-$ $15 / 19), 9.59(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13) .{ }^{1} \mathrm{H}$ NMR (Minor isomer, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $10 / 11 / 12), 4.34(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.52(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-4 / 6), 5.25(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-7)$, $5.70(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.34-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 / 17 / 18), 7.48$ ($2 \mathrm{H}, \mathrm{dd}, J=1.5,7.2 \mathrm{~Hz}, \mathrm{H}-15 / 19$), 10.20 $(0.5 \mathrm{H}, \mathrm{s}, \mathrm{H}-13) .{ }^{13} \mathrm{C}$ NMR (Major isomer, $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.4$ (C-10/11/12), 60.6 (C-4), 69.7 (C-3/5), 81.4 (C-9), 101.8 (C-1), 126.3 (C-15/19), 128.5 (C-16/18), 129.5 (C-17), 137.2 (C-
14), 155.9 (C-8), 198.5 (C-13). ${ }^{13} \mathrm{C}$ NMR (Minor isomer, $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.4$ (C-10/11/12), 56.3 (C-4), 69.0 (C-3/5), 80.9 (C-9), 101.7 (C-1), 126.0 (C-15/19), 128.6 (C-16/18), 129.5 (C17), $137.0(\mathrm{C}-14), 154.4(\mathrm{C}-8), 200.5(\mathrm{C}-13) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right):$Calc'd. for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Li}^{+}\right] 314.1580$; found 314.1579 .
cis/trans-5-Phenylhydroxymethyl-5-(N-tert-butyloxycarbonyl)amino-2-phenyl-1,3-dioxane
24a.

Into a 25 mL 2-neck flask, fitted with a condensor and under nitrogen, was added magnesium turnings $(0.1205 \mathrm{~g}, 4.959 \mathrm{mmol}, 6.5 \mathrm{eq})$, iodine $(0.0075 \mathrm{~g}, 0.0030 \mathrm{mmol}, 0.04 \mathrm{eq})$ and $\mathrm{dry}^{2} \mathrm{Et}_{2} \mathrm{O}$ $(2.5 \mathrm{~mL})$. Iodobenzene $(0.15 \mathrm{~mL}, 0.27 \mathrm{~g}, 1.3 \mathrm{mmol}, 1.7 \mathrm{eq})$ was added and the solution warmed to reflux for 20 mins to initiate the reaction. The remaining iodobenzene $(0.41 \mathrm{~mL} .0 .75 \mathrm{~g}, 3.7$ mmol, 4.9 eq) was added slowly over 20 minutes and the solution was refluxed for an additional 60 min . This process provided 3.0 mL of a stock Grignard solution ($\sim 1.65 \mathrm{M}$). In a separate flask, the aldehyde $23(0.232 \mathrm{~g}, 0.755 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ under nitrogen and the solution cooled to $0^{\circ} \mathrm{C}$ whereupon a 2.0 mL portion ($3.3 \mathrm{mmol}, 4.3 \mathrm{eq}$) of the stock Grignard solution was added. The mixture was warmed to rt and allowed to stir for 105 min . Sat'd aqueous ammonium chloride (3.0 mL) was added and allowed to stir for 1 h . The solution was separated and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL} \times 3)$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure. Purification was conducted over silica gel silica column chromatography (100 hexanes, increasing to 80:20 v / v, hexanes:ethyl acetate) to give 24a as a $50: 50$ mixture of the cis/trans-isomers $(0.2389 \mathrm{~g}$,
$0.6189 \mathrm{mmol}, 82 \%)$. IR (4000-625v cm$\left.{ }^{-1}, \mathrm{NaCl}\right): 3414(\mathrm{O}-\mathrm{H}), 3331(\mathrm{O}-\mathrm{H}), 3064,3034,2978$, 2931, 2869, 1713 (C=O), 1683 (C=O), 1508, 1454, 1392, 1368, 1292, 1250, 1163, 1126, 1088, 1049, 1029, 982, 937, 916, 874, 787, 744, 699, 636. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 1.44(9 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-10 / 11 / 12), 1.50(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-10 / 11 / 12), 3.85(1 \mathrm{H}, \mathrm{dd}, J=2.25,11.4 \mathrm{~Hz}, \mathrm{H}-4 / 6), 3.90(1 \mathrm{H}, \mathrm{d}, J=$ $11.4 \mathrm{~Hz}, \mathrm{H}-4 / 6), 3.95(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.03(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.04(1 \mathrm{H}, \mathrm{d}, J$ $=11.5 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.11-4.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 / 6), 4.57(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-13)$, 4.121368-4.75 (2H, m, H-4/6), $4.83(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{OH}-14), 5.12(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-7), 5.44(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 5.53(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}$, $\mathrm{H}-13), 5.63(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 6.31(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-13), 7.22-7.52(18 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $16 / 17 / 18 / 19 / 20 / 23 / 24 / 25), 7.55(2 \mathrm{H}, \mathrm{dd}, J=1.5,8.2 \mathrm{~Hz}, \mathrm{H}-22 / 26) .{ }^{13} \mathrm{C}$ NMR (both isomers, $\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 28.4$ (C-10/11/12), 28.5 (C-10/11/12), 54.6 (C-5), $56.0(\mathrm{C}-5), 70.3$ (C-13), 70.4 (C-13), 72.1 (C-4/6), 73.4 (C-4/6), 81.2 (C-9),101.8 (C-2), 102.2 (C-2), 126.2 (C-18), 126.5 (C-23/25), 127.0 (C-23/25), 127.7 (C-17/19), 128.1 (C-17/19), 128.3 (C-16/20), 128.3 (C-16/20), 128.5 (C-22/26), 128.6 (C-22/26), 129.3 (C-24), 129.3 (C-24), 137.7 (C-21), 137.7 (C-21), 139.9 (C-15), 139.9 (C-15). MS (ESI+): Calc'd for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}\right]: 386.1967$; found 386.1960.
cis/trans-5-(4'-Chloro)phenylhydroxymethyl-5-(N-tert-butyloxycarbonyl)amino-2-phenyl-1,3-dioxane 24b.

Into a 10 mL 2-neck flask, fitted with a condenser and under nitrogen, was added magnesium turnings ($0.0354 \mathrm{~g}, 1.46 \mathrm{mmol}, 2.4 \mathrm{eq})$, iodine $(0.0028 \mathrm{~g}, 0.011 \mathrm{mmol}, 0.018 \mathrm{eq})$ and dry THF (0.6
$\mathrm{mL}) .4$-Chlorobromobenzene $(0.276 \mathrm{~g}, 1.44 \mathrm{mmol}, 2.3 \mathrm{eq})$ was dissolved in THF (0.5 mL) and an aliquot $(0.15 \mathrm{~mL})$ of this mixture was added to the magnesium suspension solution and the solution heated to $70{ }^{\circ} \mathrm{C}$ to initiate the reaction. Once the reaction began, the remaining 4 chlorobromobenzene mixture was added slowly over 30 mins. The mixture was heated for a further 60 mins before being cooled to $0^{\circ} \mathrm{C}$. Aldehyde $23(0.1895 \mathrm{~g}, 0.6166 \mathrm{mmol}, 1.0 \mathrm{eq})$ dissolved in THF (1 mL) was added over 2 mins and the reaction allowed to warm to rt while and stirred for an additional 2 h . Sat'd aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3.0 \mathrm{~mL})$ was then added and the solution stirred for 60 min . The reaction mixture was partitioned with $\mathrm{Et}_{2} \mathrm{O}$, the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL} \times 3)$ and the combined organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed under reduced pressure. Purification was performed over silica gel silica column chromatography to yield $\mathbf{2 4 b}$ as a $50: 50$ mixture of the cis/trans-isomers mixture of isomers, a pale orange solid $(0.1275 \mathrm{~g}, 0.3036 \mathrm{mmol}, 49 \%)$. IR ($\left.4000-625 \mathrm{v} \mathrm{cm}^{-1}, \mathrm{NaCl}\right): 3409$ (OH), $3326(\mathrm{OH}), 3067,2979,2931,2868,1714(\mathrm{C}=\mathrm{O}), 1683(\mathrm{C}=\mathrm{O}), 1597,1507,1491,1456$, 1393, 1368, 1291, 1250, 1200, 1162, 1126, 1091, 1048, 1015, 988, 941, 914, 876, 841, 743, 698. ${ }^{1} \mathrm{H}$ NMR (mixture of cis/trans isomers in a $1: 1$ ratio, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.44(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $10 / 11 / 12), 1.49(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-10 / 11 / 12), 3.80(1 \mathrm{H}, \mathrm{dd}, J=2.8,11.7 \mathrm{~Hz}, \mathrm{H}-4 / 6), 3.87(1 \mathrm{H}, \mathrm{d}, J=$ $11.6 \mathrm{~Hz}, \mathrm{H}-4 / 6), 3.95(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{H}-4 / 6), 3.98(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.00(1 \mathrm{H}, \mathrm{d}, J$ $=11.7 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{H}-4 / 6), 4.36(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}-14), 4.48(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-7), 4.66-4.72$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 / 6$), $4.85(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{OH}-14), 5.12(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-7), 5.44(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 5.49$ $(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{H}-13), 5.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 6.38(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-13), 7.19(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 7.30-7.44(12 \mathrm{H}$ over 2 isomers, m), $7.46(2 \mathrm{H}, \mathrm{dd}, J=1.9,8.0 \mathrm{~Hz}, \mathrm{H}-22 / 26), 7.54(2 \mathrm{H}, \mathrm{dd}$, $J=1.5,8.1 \mathrm{~Hz}, \mathrm{H}-22 / 26) .{ }^{13} \mathrm{C}$ NMR (cis/trans isomers, $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.4(\mathrm{C}-10 / 11 / 12)$, 28.4 (C-10/11/12), 54.6 (C-5), 55.9 (C-5), 70.1 (C-9), 70.2 (C-4/6), 70.4 (C-9), 72.1 (C-4/6),
76.3 (C-13), 81.5 (C-13), 101.9 (C-2), 102.3 (C-2), 126.1, 126.4, 128.3, 128.5, 128.5, 128.6, 129.0, 129.4, 129.4, 133.9, 133.9, 137.5, 138.5, 138.5. MS (ESI+): Calc'd for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClNO}_{5}{ }^{+}\right]$: 420.1578; found 420.1559 .

4-Benzoyloxymethyl-4-benzoyl-2-oxazolidinone 25a.

Compound 24a ($0.1563 \mathrm{~g}, 0.4055 \mathrm{mmol}, 1.0 \mathrm{eq}$), NBS ($0.2197 \mathrm{~g}, 1.234 \mathrm{mmol}, 3.0 \mathrm{eq}$), BPO (75% in $\mathrm{H}_{2} \mathrm{O}, 0.0416 \mathrm{~g}, 0.1288 \mathrm{mmol}, 0.32 \mathrm{eq}$), and chlorobenzene $(4.0 \mathrm{~mL})$ were added to a 2neck 50 mL rbf fitted with a condenser under nitrogen. The mixture was heated at $70^{\circ} \mathrm{C}$ for 2 h , then cooled to rt. Sat'd aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ and $\mathrm{DCM}(2 \mathrm{~mL})$ were added and the organic layer removed. The aqueous layer was washed with $\operatorname{DCM}(4 \mathrm{~mL} \times 3)$ and the combined organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed under reduced pressure. Purification was conducted over silica gel column chromatography (100 hexanes, gradually increasing to $50: 50 \mathrm{v} / \mathrm{v}$, hexanes:ethyl acetate) to give 25a as colourless crystals ($0.0854 \mathrm{~g}, 0.263 \mathrm{mmol}, 65 \%$). IR (4000-625v cm $\left.{ }^{-1}, \mathrm{NaCl}\right): 3351(\mathrm{~N}-\mathrm{H}), 3065,2923,1764(\mathrm{C}=\mathrm{O}), 1725(\mathrm{C}=\mathrm{O}), 1686,1598$, $1582,1450,1395,1270,1179,1110,1050,1027,710,689 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 84.75 $(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}-5), 4.78(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}-5), 4.78(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{H}-13), 4.81$ ($1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{H}-13$), $5.96(1 \mathrm{H}, \mathrm{s}-$ broad, $\mathrm{NH}-3), 7.45(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-17 / 19), 7.54$ ($2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-9.11$), $7.59(1 \mathrm{H}, \mathrm{tt}, J=1.2,7.4 \mathrm{~Hz}, \mathrm{H}-16), 7.66(1 \mathrm{H}, \mathrm{tt}, J=1.1,7.4 \mathrm{~Hz}, \mathrm{H}-$ 10), $7.85(2 \mathrm{H}, \mathrm{dd}, J=1.3,8.3 \mathrm{~Hz}, \mathrm{H}-8 / 12), 7.96(2 \mathrm{H}, \mathrm{dd}, J=1.3,8.4 \mathrm{~Hz}, \mathrm{H}-16 / 20) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 68.0$ (C-5), 68.3 (C-4), 69.2 (C-13), 128.7 (C-15), 128.8 (C-9/11), 129.0
(C-17/19), 129.5(C-8/12), 129.9 (16/20), 132.9 (C-7), 134.0 (C-18), 134.6 (C-10), 157.2 (C-2), 166.1 (C-14), 195.9 (C-6). MS (ESI', TOF): Calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{5}+\mathrm{H}^{+}\right]$: 326.1028; found 326.1016. M.p.: $137.1-138.7^{\circ} \mathrm{C}$ (from EtOAc).

4-Benzoyloxymethyl-4-(4'-chloro)benzoyl-2-oxazolidinone 25b.

Into a tapered microwave vial was weighed compound $\mathbf{2 4 b}(0.0325 \mathrm{~g}, 0.0722 \mathrm{mmol}, 1.0 \mathrm{eq})$, NBS ($0.0560 \mathrm{~g}, 0.315 \mathrm{mmol}, 4.4 \mathrm{eq}$), and a catalytic amount of $\mathrm{BPO}\left(75 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 0.0118 \mathrm{~g}$, $0.0365 \mathrm{mmol}, 0.47 \mathrm{eq})$ added. The flask was gently flushed with nitrogen, chlorobenzene $(0.6$ mL) was added and the mixture heated at $70^{\circ} \mathrm{C}$ for 6 h . The reaction was then cooled sat'd aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and $\mathrm{DCM}(0.5 \mathrm{~mL})$ were added. The layers were separated and the aqueous phase was washed with DCM ($3 \times 1.0 \mathrm{~mL}$). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure. Purification was conducted over silica gel column chromatography (Hexane:EtOAc) to yield compound 25b as a clear, colourless, amorphous solid ($0.0216 \mathrm{~g}, 0.0600 \mathrm{mmol}, 78 \%)$. IR ($4000-625 \mathrm{v} \mathrm{cm}^{-1}, \mathrm{NaCl}$): 3345 (NH), 3070, 2977, 2929, 1763 (C=O), 1725 (C=O), 1690 (C=O), 1588, 1488, 1451, 1397, $1369,1271,1178,1110,1095,1071,1051,1027,961,843,712 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 84.67-4.80 (4H, m, H-5/13), 6.48 (1 H, s-broad, NH-3), 7.43 ($2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-17 / 19$), 7.49 (2H, d, $J=8.6 \mathrm{~Hz}, \mathrm{H}-9 / 11), 7.58(1 \mathrm{H}, \mathrm{dt}, J=0.7,7.2 \mathrm{~Hz}, \mathrm{H}-18), 7.81(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-8 / 12)$, $7.94(2 \mathrm{H}, \mathrm{dd}, J=0.7,7.8 \mathrm{~Hz}, \mathrm{H}-16 / 20) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 67.8$ (C-4), 68.2 (C-5), 69.2 (C-13), 128.7, 128.8 (C-9/11), 129.8 (C-17/19), 130.0 (C-16/20), 130.4 (C-8/12), 131.4 (C-
7), 134.0 (C-18), 141.2 (C-10), 157.5 (C-2), 166.1 (C-14), 195.11 (C-6). MS (ESI+): Calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClNO}_{5}+\mathrm{H}^{+}\right]$360.0639; found 360.0628.

4-(4'-Octylphenyl)ethyl-4-benzoyloxymethyl-2-oxazolidinone 28.

N-Boc-benzylidene protected-FTY720 27 was prepared from aldehyde $\mathbf{2 3}$ following to the literature protocol. ${ }^{3}$ Into a 5 mL reaction vial was weighed compound $27(0.0197 \mathrm{~g}, 0.0397$ mmol, 1.0 eq) and $\operatorname{NBS}(0.0082 \mathrm{~g}, 0.070 \mathrm{mmol}, 1.8 \mathrm{eq})$. The flask was gently flushed with nitrogen and $\mathrm{BPO}\left(75 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.0016 \mathrm{~g}, 0.0050 \mathrm{mmol}, 0.12 \mathrm{eq}\right)$ and chlorobenzene $(0.4 \mathrm{~mL})$ sequentially added. The solution was heated at $70{ }^{\circ} \mathrm{C}$ for 120 min at which time second portions of NBS ($0.0046 \mathrm{~g}, 0.039 \mathrm{mmol}, 0.98 \mathrm{eq})$ and $\mathrm{BPO}\left(75 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 0.0012 \mathrm{~g}, 0.037 \mathrm{mmol}, 0.093$ eq) were added and heating continued for an additional 60 min (at $70{ }^{\circ} \mathrm{C}$). The mixture was cooled, diluted with sat'd aqueous $\mathrm{NaHCO}_{3}(0.8 \mathrm{~mL})$ and $\mathrm{DCM}(0.8 \mathrm{~mL})$ and the organic phase separated. The aqueous layer was extracted with $\operatorname{DCM}(3 \times 1 \mathrm{~mL})$, the organic layers combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent removed under reduced pressure. Puriification over silica gel column chromatography (100% hexanes, slow gradient elution to $90: 10 \mathrm{v} / \mathrm{v}$, hexanes:ethyl acetate) yielded compound 28 as a colorless amorphous solid ($0.0093 \mathrm{~g}, 0.021$ $\mathrm{mmol}, 54 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.81(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H}-29), 1.15-1.28(12 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-23 / 24 / 25 / 26 / 27 / 28), 1.93-2.02(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 2.50(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-22), 2.60-2.70(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-15), 4.17(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-6), 4.23(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{H}-5), 4.30(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}$, $\mathrm{H}-6), 4.38(2 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{H}-5), 5.0(1 \mathrm{H}$, broad s, NH-3), $7.02(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-18 / 20)$,
$7.05(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-17 / 21), 7.40(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-10 / 12), 7.53(1 \mathrm{H}, \mathrm{tt}, J=1.1,7.4 \mathrm{~Hz}$, $\mathrm{H}-11), 7.95(2 \mathrm{H}, \mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}, \mathrm{H}-9 / 13) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 14.3(\mathrm{C}-29), 22.8$ (C-28), 29.4, 29.5, 29.5, 29.6, 31.7, 32.0, 35.7, 37.8 (C-14), 60.0 (C-4), 67.7 (C-5), 71.8 (C-6), 128.2, 128.8 (C10/12), 129.0, 129.2 (C-8), 129.9 (C-9/13), 133.8 (C-11), 137.2, 141.5, 158.4 (C2), 166.3 (C-7). MS (ESI', TOF): Calc'd for $\left[\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{4}{ }^{+}\right]: 438.2644$; found 438.2636.

4-Benzoyloxymethyl-4-(4'-toluenesulfonyl)methyloxy-2-oxazolidinone 29.

Oxazolidinone 8a ($0.3197 \mathrm{~g}, 1.272 \mathrm{mmol}, 1.0 \mathrm{eq}$) and tosyl chloride $(0.7410 \mathrm{~g}, 3.886 \mathrm{mmol}, 3.05$ eq) were added to a flame-dried 25 mL flask under N_{2}. Lutidine (3.0 mL) was added and the mixture stirred for 20.5 h at rt . The thick, dark-red mixture was partitioned between DCM and water and the organic phase concentrated under reduced pressure. Purification was performed through column chromatography (hexane-packed, eluted using 80:20 v / v, hexanes:ethyl acetate) to give 8a as a colourless crystalline solid $(0.4493 \mathrm{~g}, 1.108 \mathrm{mmol}, 87 \%)$. IR ($4000-625 \mathrm{v} \mathrm{cm}^{-1}$, $\mathrm{NaCl}): 3343,3066$ (aromatic $\mathrm{C}-\mathrm{H}), 3032$, 2957, 2918, $1765(\mathrm{C}=\mathrm{O}), 1725(\mathrm{C}=\mathrm{O}$ carbamate), $1599(\mathrm{C}=\mathrm{C}$ aromatic $), 1585(\mathrm{C}=\mathrm{C}$ aromatic $), 1532,1451$ ($\mathrm{C}=\mathrm{C}$ aromatic), 1401 ($\mathrm{C}=\mathrm{C}$ aromatic), 1366, 1315, 1269 (C-O), 1212, 1191, 1177, 1113, 1097, 1071, 1050, 1027, 1019, 992, 937, 830 (p-sub'd aromatic C-H), 814, 793, 764, 712, 686, 667. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37(3 \mathrm{H}$, s, H-13), 4.15 ($2 \mathrm{H}, \mathrm{dd}, J=10.2,16.3 \mathrm{~Hz}, \mathrm{H}-6), 4.24(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-14), 4.30(1 \mathrm{H}, \mathrm{d}, J=$ 11.6 Hz, H-5), $4.31(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-14), 4.44(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-5), 5.59(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-3)$, $7.30(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-9 / 11), 7.45(2 \mathrm{H}, \mathrm{dd}, J=1.7,7.4,8.2 \mathrm{~Hz}, \mathrm{H}-18 / 20), 7.61$ (1 H , dddd, J
$=1.3,1.3,7.4,7.4 \mathrm{~Hz}, \mathrm{H}-19), 7.77(2 \mathrm{H}, \mathrm{dd}, J=1.6,8.2 \mathrm{~Hz}, \mathrm{H}-8 / 12), 7.91(2 \mathrm{H}, \mathrm{dd}, J=1.3,8.2$ $\mathrm{Hz}, \mathrm{H}-17 / 21) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 21.8$ (C-13), 59.2 (C-4), 64.9 (C-5), 69.1 (C-6), 69.3 (C-14), 128.1 (C-9/11), 128.8 (C-18/20), 129.9 (C-17/21), 130.3 (C-8/12), 131.8 (C-10), 134.0 (C-19), $146.0(\mathrm{C}-7), 157.7(\mathrm{C}-2), 165.8(\mathrm{C}-15) . \mathrm{MS}(\mathrm{CI}):$ Calc'd for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{7} \mathrm{~S}+\mathrm{H}^{+}\right]$: 406.0960, found (minor): 406.1000. Calc'd for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{7} \mathrm{~S}\right.$ - $\left.\mathrm{OTos}^{-}\right]$: 234.0766; found: 234.0752. M.p.: $118.9-122.0^{\circ} \mathrm{C}$.

4-Azidomethyl-4-benzoyloxymethyl-2-oxazolidinone 30.

A flame-dried 2-neck flask was charged with the oxazolidinone $29(0.2010 \mathrm{~g}, 0.04958 \mathrm{mmol}, 1.0$ eq), DMF (1.4 mL) and sodium azide ($0.1796 \mathrm{~g}, 0.2763 \mathrm{mmol}, 5.5 \mathrm{eq})$. The solution was heated at $80^{\circ} \mathrm{C}$ for 5 h . The solvent was removed under reduced pressure, and the resulting solid taken into DCM (4 x 3 mL). The combined DCM phase was concentrated under reduced pressure to afford a white solid ($0.1505 \mathrm{~g}, 0.4724 \mathrm{mmol}, 95.3 \%)$. $\mathrm{IR}\left(4000-625 \mathrm{v} \mathrm{cm}^{-1}, \mathrm{NaCl}\right): 3312,3071$, 2957, 2918, 2867, 2112, 1759 (C=O), 1725 (C=O), 1602, 1584, 1535, 1491, 1475, 1451, 1401, $1350,1316,1272,1179,1161,1114,1072,1048,1028,1000,961,937,806,767,712,687,668$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.61(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H}-14), 3.67(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{H}-14)$, $4.29(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-6), 4.33(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-5), 4.33(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-6), 4.48$ ($1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-5$), $5.78(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-3), 7.48(2 \mathrm{H}, \mathrm{dd}, J=7.6,7.8 \mathrm{~Hz}, \mathrm{H}-10 / 12), 7.61(1 \mathrm{H}$, dd, $J=7.6 \mathrm{~Hz}, \mathrm{H}-11), 8.02(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-9 / 13) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 54.9(\mathrm{C}-$ 14), 60.1 (C-4), 65.7 (C-5), 69.9 (C-6), 128.8 (C-10/12), 128.9 (C-8), 129.9 (C-9/13), 134.0 (C-
11), 158.3 (C-2), 166.1 (C-7). MS. (ESI+, TOF): Calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}^{+}\right]=277.0937$; found: 277.0928. Colorless crystals suitable for X-ray analysis were deposited from slow evaporation of a solution in dichloromethane in the refrigerator. M.p. $120^{\circ} \mathrm{C}$ (decomp).

Synthesis of chloropropyl-triazole 31a.

Into a flame-dried tapered microwave vial under N_{2} was added the azide $\mathbf{3 0}(0.030 \mathrm{~g}, 0.11 \mathrm{mmol}$, 1.0 eq). Copper (I) iodide ($0.0013 \mathrm{~g}, 0.0068 \mathrm{mmol}, 0.06 \mathrm{eq}$), and copper (II) acetate monohydrate $(0.0015 \mathrm{~g}, 0.0075 \mathrm{mmol}, 0.079 \mathrm{eq})$ were dissolved in dry THF (0.2 mL) and added to the azide. 5-chloro-1-pentyne $(0.018 \mathrm{~mL}, 0.017 \mathrm{~g}, 0.17 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added, the vial was septa-sealed and the mixture was heated at $50^{\circ} \mathrm{C}$ for 18 h . Small portions of THF added occasionally to retain the original volume. The mixture was cooled to room temperature, the solvent removed under pressure and the crude material purified over silica gel column chromatography (silica gel, 80:20 v / v, hexanes:ethyl acetate, slowly increasing the ratio to 50:50 hexanes:ethyl acetate). Compound 31a was isolated as an unstable solid ($0.0292 \mathrm{~g}, 0.0771 \mathrm{mmol}, 70 \%$). IR ($4000-625 \mathrm{v} \mathrm{cm}^{-1}, \mathrm{NaCl}$): 3341 (N-H), 3126, 3013, 2920, 1765, 1747 (C=O), 1715 (C=O), 1471, 1451, 1439, 1426, 1395, 1350, 1335, 1313, 1299, 1277 (C-O), 1264 (C-O), 1225, 1177, 1163, 1123, 1110, 1097, 1071, 1041 (C-N), 999, 951, 929, 910, 863, 826, 82, 766, $706(\mathrm{C}-\mathrm{Cl}), 696,651 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}): \delta 2.13(2 \mathrm{H}, \mathrm{tt}, J=6.3,7.3 \mathrm{~Hz}, \mathrm{H}-18), 2.87(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}-17), 3.54(2 \mathrm{H}, \mathrm{t}, J=$ $6.3 \mathrm{~Hz}, \mathrm{H}-19), 4.29(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}-4), 4.41(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-6), 4.41(1 \mathrm{H}, \mathrm{d}, J=$
$11.7 \mathrm{~Hz}, \mathrm{H}-14), 4.51(1 \mathrm{H}, \mathrm{d}, 9.2 \mathrm{~Hz}, \mathrm{H}-6), 4.60(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}, \mathrm{H}-5), 4.66(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}$, H-5), $6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-3), 7.46(2 \mathrm{H}, \mathrm{dd}, 7.2,8.1 \mathrm{~Hz}, \mathrm{H}-10 / 12), 7.47(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 7.61(1 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}, \mathrm{H}-11), 8.01(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-9 / 13) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): 22.6(\mathrm{C}-18), 31.7$ (C-17), 44.2 (C-19), 53.4 (C-14), 60.3 (C-4), 65.9 (C-5), 69.8 (C-6), 123.2 (C-15), 128.7 (C-8), 128.9 (C-10/12), 129.9 (C-9/13), 134.1 (C-11), 147.1 (C-16), 158.2 (C-2), 165.9 (C-7).

Synthesis of phenyl triazole 31b.

Into a flame-dried tapered microwave vial under N_{2} was added azide $30(0.0091 \mathrm{~g}, 0.33 \mathrm{mmol}, 1.0$ eq). Copper (I) iodide ($0.0008 \mathrm{~g}, 0.0042 \mathrm{mmol}, 0.13 \mathrm{eq}$) and copper acetate monohydrate (0.006 g , $0.003 \mathrm{mmol}, 0.09 \mathrm{eq})$ were dissolved in dry THF $(0.07 \mathrm{~mL})$ and added to the azide. Phenylacetylene $(0.004 \mathrm{~mL}, 0.0037 \mathrm{~g}, 0.036 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added, the vial was septa-sealed and the mixture heated at $50{ }^{\circ} \mathrm{C}$ for 5.5 h , then temperature was lowered and the mixture was heated at $40^{\circ} \mathrm{C}$ for a further 18h. Small portions of THF were added occasionally to retain the original volume. The mixture was cooled to room temperature and diluted with water $(0.2 \mathrm{~mL})$, then extracted into DCM. The combined organic phase was rinsed with saturated NaHCO_{3}, separated and the solvent removed under reduced pressure. Purification was conducted over silica gel silica column chromatography (80:20 v/v, hexanes:ethyl acetate, slowly increasing the ratio to $50: 50$ hexanes:ethyl acetate) to give 31b as a white solid ($0.0089 \mathrm{~g}, 0.024 \mathrm{mmol}, 71.3 \%$). IR ($4000-625 \mathrm{v} \mathrm{cm}^{-1}, \mathrm{NaCl}$): $2920(\mathrm{C}-\mathrm{H}), 2850$, 2110, $1760(\mathrm{C}=\mathrm{O}), 1722(\mathrm{C}=\mathrm{O}), 1700(\mathrm{C}=\mathrm{O}), 1700,1406,1318,1266(\mathrm{C}-\mathrm{O}), 1181,1111,1073$,

1042, 1028, $909,765,713 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 4.32(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}-14), 4.44(1 \mathrm{H}$, d, $J=9.3 \mathrm{~Hz}, \mathrm{H}-6), 4.45(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}-14), 4.53(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}, \mathrm{H}-6), 4.65(1 \mathrm{H}, \mathrm{d}, J=$ $14.4 \mathrm{~Hz}, \mathrm{H}-5), 4.69(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}, \mathrm{H}-5), 6.5(1 \mathrm{H}, \mathrm{s}-$ broad, $\mathrm{NH}-3), 7.34(1 \mathrm{H}, \mathrm{tt}, J=1.1,7.5 \mathrm{~Hz}$, $\mathrm{H}-20), 7.41(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-19 / 21), 7.45(2 \mathrm{H}, \mathrm{t}, J=7.5,8.1 \mathrm{~Hz}, \mathrm{H}-10 / 12), 7.60(1 \mathrm{H}, \mathrm{tt}, J=1.2$, $8.1 \mathrm{~Hz}, \mathrm{H}-11), 7.78(2 \mathrm{H}, \mathrm{dd}, J=1.1,7.3 \mathrm{~Hz}, \mathrm{H}-18 / 22), 7.87(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 8.00(2 \mathrm{H}, \mathrm{dd}, J=1.2$, $8.1 \mathrm{~Hz}, \mathrm{H}-9 / 13$). ${ }^{13} \mathrm{C}$ NMR (150MHz, DMSO-d d_{6}): $\delta 54.1$ (C-4), 60.7 (C-14), 60.8 (C-14), 67.3 (C-5), 69.9 (C-6), 123.2 (C-20), 126.3 (C-18/22), 128.8 (C-11), 129.5 (C-19/21), 129.7 (C-10/12), 130.5 (C-17), 130.5 (C-9/13), 132.0 (C-8), 134.4 (C-15), 148.1 (C-16), 158.3 (C-2), 158.3 (C-2), 166.4 (C7). MS (CI): Calc'd for $\left[\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}^{+}\right]$: 379.1406 ; found: 379.1405 .

4-Benzoyloxymethyl-4-(methoxymethyl)methyloxy-3-phenyl-2-oxazolidinone 32 .

Into a flame-dried tapered microwave vial under N_{2} was added $\mathrm{CuI}(0.0322 \mathrm{~g}, 0.169 \mathrm{mmol}$, $2.70 \mathrm{eq})$, dioxane $(0.20 \mathrm{~mL})$, then trans-1,2-diaminocyclohexane $(0.020 \mathrm{~mL}, 0.019 \mathrm{~g}$, $0.0169 \mathrm{mmol}, 2.70 \mathrm{eq})$. The mixture was heated at $40^{\circ} \mathrm{C}$ for 5 mins , then cooled to rt . Bromobenzene ($0.020 \mathrm{~mL}, 0.19 \mathrm{mmol}, 0.030 \mathrm{~g}, 3.0 \mathrm{eq}$) was then added and the mixture was stirred for 20 mins at rt , followed by addition of the MOM-protected oxazolidinone $\mathbf{8 b}(0.0162 \mathrm{~g}$, $0.0625 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.0221 \mathrm{~g}, 0.160 \mathrm{mmol}, 2.56 \mathrm{eq})$. The vial was subsequently capped and the mixture heated at $110{ }^{\circ} \mathrm{C}$ for 24 h . The solution was diluted with dioxane $(0.30$ mL) and heated at $110{ }^{\circ} \mathrm{C}$ for a further 3 days. After cooling, the solvent was removed under reduced pressure and purification was performed via silica column chromatography (100%
hexanes, gradient elution to $70: 30 \mathrm{v} / \mathrm{v}$, hexanes:ethyl acetate) to afford $\mathbf{3 2}$ as a white solid ($0.0144 \mathrm{~g}, 0.0388 \mathrm{mmol}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-22), 3.60(1 \mathrm{H}, \mathrm{d}, J=$ $10.0 \mathrm{~Hz}, \mathrm{H}-20), 3.70(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{H}-20), 4.22(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{H}-5), 4.48(1 \mathrm{H}, \mathrm{d}, J=$ $12.0 \mathrm{~Hz}, \mathrm{H}-5), 4.49(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-12), 4.57(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-12), 4.66(2 \mathrm{H}, \mathrm{dd}, J=$ 6.7, $9.1 \mathrm{~Hz}, \mathrm{H}-21$), $7.26-7.28$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 / 10$), $7.37(1 \mathrm{H}, \mathrm{tt}, J=1.3,6.2 \mathrm{~Hz}, \mathrm{H}-9), 7.41(2 \mathrm{H}, \mathrm{tt}, J$ $=1.4,7.0 \mathrm{~Hz}, \mathrm{H}-7 / 11), 7.47(2 \mathrm{H}, \mathrm{dt}, J=8.2 \mathrm{~Hz}, \mathrm{H}-16 / 18), 7.61(1 \mathrm{H}, \mathrm{tt}, J=1.3,7.5 \mathrm{~Hz}, \mathrm{H}-17)$, $7.99(2 \mathrm{H}, \mathrm{dd}, J=1.2,8.3 \mathrm{~Hz}, \mathrm{H}-15-19) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 56.1(\mathrm{C}-22), 64.5(\mathrm{C}-4)$, 64.5 (C-20), 68.3 (C-12), 68.4 (C-5), 97.1 (C-21), 128.9 (C-16/18), 128.9 (C-7/11), 129.1 (C-9), 129.3 (C-17), 129.9 (C-8/10), 129.9 (C-15/19), 133.9 (C-14), 134.4 (C-6), 157.6 (C-2), 166.0 (C13).

References:

1. Balakumar, V.; Aravind, A.; Baskaran, S. Synlett. 2004, 647.
2. Schmidt, U.; Riedl, B. Synthesis. 1993, 815.
3. Calzavara, J.; McNulty, J. Tetrahedron Lett. 2011, 52, 5672.
4. Katsumura, S.; Kondo, A.; Han, Q. Chem. Lett. 1991, 1245.
