Supporting Information For

X-Ray Photoelectron Spectroscopy of Metal Ionic Liquids

Alasdair W. Taylor*, Shuang Men, Coby J. Clarke, Peter Licence*

The School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, UK

> *To whom correspondence should be addressed: Alasdair.Taylor@nottingham.ac.uk peter.licence@nottingham.ac.uk

> > Tel: +44 115 8466176

Figure S1 (a) Survey scan and high resolution XP spectra of the (b) Fe 2p, (c) C 1s, (d) N 1s and (e) Cl 2p regions of $[C_8C_1Im]Cl$ -Fe^{II}Cl₂ ($\chi_{FeCl2} = 0.33$). The components used to fit the C 1s XP spectrum are shown in (c), allowing the simulated envelope to be compared with the experimental spectrum (black dots). Absolute binding energies are given in Table 1; all spectra were charge corrected to $C_{aliph} 1s = 285.0 \text{ eV}$.

Figure S2 (a) Survey scan and high resolution XP spectra of the (b) Co 2p, (c) C 1s, (d) N 1s and (e) Cl 2p regions of $[C_8C_1Im]Cl-Co^{II}Cl_2$ ($\chi_{CoCl2} = 0.33$). The components used to fit the C 1s XP spectrum are shown in (c), allowing the simulated envelope to be compared with the experimental spectrum (black dots). Absolute binding energies are given in Table 1; all spectra were charge corrected to $C_{aliph} 1s = 285.0 \text{ eV}.$

Figure S3 (a) Survey scan and high resolution XP spectra of the (b) Ni 2p, (c) C 1s, (d) N 1s and (e) Cl 2p regions of $[C_8C_1Im]Cl-Co^{II}Cl_2$ ($\chi_{NiCl2} = 0.33$). The components used to fit the C 1s XP spectrum are shown in (c), allowing the simulated envelope to be compared with the experimental spectrum (black dots). Absolute binding energies are given in Table 1; all spectra were charge corrected to C_{aliph} 1s = 285.0 eV.

Figure S4 (a) Survey scan and high resolution XP spectra of the (b) Zn 2p, (c) C 1s, (d) N 1s and (e) Cl 2p regions of $[C_8C_1Im]Cl$ - $Zn^{II}Cl_2$ ($\chi_{ZnCl2} = 0.25$). The components used to fit the C 1s XP spectrum are shown in (c), allowing the simulated envelope to be compared with the experimental spectrum (black dots). Absolute binding energies are given in Table 1; all spectra were charge corrected to C_{aliph} 1s = 285.0 eV.

Figure S5 (a) Survey scan and high resolution XP spectra of the (b) Zn 2p, (c) C 1s, (d) N 1s and (e) Cl 2p regions of $[C_8C_1Im]Cl$ - $Zn^{II}Cl_2(\chi Zn_{Cl2} = 0.33)$. The components used to fit the C 1s XP spectrum are shown in (c), allowing the simulated envelope to be compared with the experimental spectrum (black dots). Absolute binding energies are given in Table 1; all spectra were charge corrected to C_{aliph} 1s = 285.0 eV.

Figure S6 (a) Survey scan and high resolution XP spectra of the (b) Zn 2p, (c) C 1s, (d) N 1s and (e) Cl 2p regions of $[C_8C_1Im]Cl$ - $Zn^{II}Cl_2$ ($\chi_{ZnCl2} = 0.5$). The components used to fit the C 1s XP spectrum are shown in (c), allowing the simulated envelope to be compared with the experimental spectrum (black dots). Absolute binding energies are given in Table 1; all spectra were charge corrected to C_{aliph} 1s = 285.0 eV.

Figure S7 (a) Survey scan and high resolution XP spectra of the (b) Zn 2p, (c) C 1s, (d) N 1s and (e) Cl 2p regions of $[C_8C_1Im]Cl$ - $Zn^{11}Cl_2$ ($\chi_{ZnCl2} = 0.6$). The components used to fit the C 1s XP spectrum are shown in (c), allowing the simulated envelope to be compared with the experimental spectrum (black dots). Absolute binding energies are given in Table 1; all spectra were charge corrected to C_{aliph} 1s = 285.0 eV.

Figure S8 (a) N 1s and (b) C_{hetero} 1s binding energies taken from the XP spectra of 7 common $[C_8C_1Im][X]$ ionic liquids plotted against β .^{1,2} The anions, X, are $1 = C\Gamma$; $2 = Br^2$; $3 = \Gamma$; $4 = [TfO]^2$; $5 = [BF_4]^2$; $6 = [PF_6]^2$; $7 = [Tf_2N]^2$.

References

- 1. I. J. Villar-Garcia, E. F. Smith, A. W. Taylor, F. Qiu, K. R. J. Lovelock, R. G. Jones and P. Licence, *Phys. Chem. Chem. Phys.*, 2011, **13**, 2797-2808.
- 2. R. Lungwitz and S. Spange, New J. Chem., 2008, 32, 392-394.